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Abstract 

Facial Expression Recognition (FER) is an effortless task for humans, and such non-verbal 

communication is intricately related to how we relate to others beyond the explicit content of our 

speech. Facial expressions can convey how we are feeling, as well as our intentions, and are thus 

a key point in multimodal social interactions. Recent computational advances, such as promising 

results from Convolutional Neural Networks (CNN), have drawn increasing attention to the 

potential of FER to enhance human-agent interaction (HAI) and human-robot interaction (HRI), 

but questions remain as to how “transferrable” the learned knowledge is from one task 

environment to another. In this paper, we explore how FER can be deployed in HAI cooperative 

game paradigms, where a human subject interacts with a virtual avatar in a goal-oriented 

environment where they must cooperate to survive.  The primary question was whether transfer 

learning (TL) would offer an advantage for FER over pre-trained models based on similar (but the 

not exact same) task environment.  The final results showed that TL was able to achieve 

significantly improved results (94.3% accuracy), without the need for an extensive task-specific 

corpus.  We discuss how such approaches could be used to flexibly create more life-like robots 

and avatars, capable of fluid social interactions within cooperative multimodal environments. 

Keywords: facial expression recognition, emotion detection, human-robot interaction, computer 

vision, transfer learning, social intelligence 

 

1. Introduction 

1.1 Background 

Facial expressions play a vital role in human communication. It is through them that we 

can non-verbally communicate our emotions and intentions to others beyond the explicit content 

of our speech [1]. The multimodal combination of explicit and implicit communication channels 

is a key element in human interactions [2]. Indeed, previous studies have shown that up to 55% of 

human communication is conveyed through facial expressions [3]. As such, facial expression 

recognition (FER) is becoming an increasingly relevant topic in human-computer interaction 

(HCI), human-robot interaction (HRI), and human-agent interaction (HAI), where we aim to 

mimic this non-verbal mode of communication to create more life-like virtual avatars, capable of 

natural and fluid social interactions with humans [4]. The applications of this topic are vast, 

ranging from virtual reality to applications in health care [5,6].  
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In this research paper, we aim to study FER in the context of multimodal interaction during 

cooperative game paradigms. More specifically, we utilize a multiplayer online survival game 

(MOG), in which an autonomous virtual avatar and a human participant have to interact in order 

to survive in a hostile environment [7]. Such a goal-oriented environment requires communication 

and coordination between the avatar and human across a variety of tasks related to survival.  FER 

takes on particular relevance in this scenario, as being able to infer the emotional state of the player 

will allow the virtual avatar to act accordingly based on non-verbal cues, potentially creating a 

more human-like social experience for the participant. Examples of this could be changing the 

avatar’s expressions to match that of the participant, changing the avatar’s tone of voice, or even 

triggering certain in-game actions in response to some FER emotional states. 

This study provides a controlled setting without the necessity of defining a specific task 

scenario since there are multiple potential paths leading to survival, in which we can test how 

different interaction behaviors of the avatar affects the subject’s perception of the interaction. The 

ultimate goal would be to determine which behavioral patterns create a more natural, human-like 

communication. Such findings may have a broader impact beyond just MOGs, which could lead 

to new insights that produce better interactive technology in general (e.g. chatbots, personal 

assistants, in-home devices) [8,9].  However, the first step towards this is creating a robust system 

for FER in such cooperative game paradigms that can address various challenges.  Common FER 

challenges include limited task-specific corpuses, proper fusing of temporal information, and the 

requirement of algorithms being able to run in real-time or near real-time, among others. Two 

different primary approaches are tested here. First, we examine the performance of pre-trained 

FER models, deriving some post-processing criteria for better results. Second, we consider the 

application of transfer learning (TL) as a comparison to the previous pre-trained architectures. 

 

1.2 Prior Research 

1.2.1 Facial Expression Recognition 

Emotion recognition in humans (including FER) is an extensively researched topic, which 

has been approached in many different ways. For instance, various sensing technology (e.g. 

cameras, eye tracking technology, electrocardiograms, electromyographs, 

electroencephalographs) have been used in emotion recognition systems [10,11]). However, some 

of those require obtrusive equipment that may bias the results and are not easily deployable in real-
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world scenarios. Considering that “visual expressions are one of the main information channels in 

interpersonal communication” [11], cameras are a very popular sensor choice when it comes to 

recognizing emotion in human faces. They are widely available and typically have easy-to-use 

interfaces, while still yielding promising results.  

Camera-based approaches for FER are typically composed of 3 steps: face detection, 

feature extraction, and expression classification. In the first step, the face is detected from the input 

images. A very common approach for such detection is the use of Haar Cascades, which were 

originally introduced by Viola and Jones in 2001 [12]. After detection, the important landmarks 

are extracted, so that they can be subsequently processed by classifiers into different expressions.  

The feature extraction process can be handled in multiple ways, but handcrafted algorithms to 

extract specific, targeted features are one popular approach. Those include texture-based features 

(e.g. Gabor filters, local binary patterns, histogram of oriented gradients) and appearance-based 

features (e.g. pixel intensities, landmark points, optical flow.) [13]. 

  

1.2.2 Deep Learning for FER 

Due to recent advances in computational resources, and the increasing attention to deep 

learning, the traditional hand-crafted approach mentioned in the previous section is sometimes 

substituted with Convolutional Neural Networks (CNN) based-approaches [14]. This has the 

advantage of providing ‘end to end’ learning, in which feature extraction is handled by the network 

itself, rather than relying on face physics models. Such Deep learning FER approaches  vary in 

terms of architecture and performance, as shown in Ko (2018) [11]. A 2020 review on the methods 

proposed for FER via deep learning provides a good summary of many recent and successful 

approaches [15]. For example, Mollahosseini et al. merged several of the existing available facial 

expression datasets, then used data pre-processing and augmentation techniques to develop a deep 

CNN (consisting of two convolution-pooling layers with two inception styles blocks), which was 

then trained on the aforementioned consolidated dataset [16]. They achieved increased 

performance, and a substantial reduction in overfitting versus the individual datasets.  Elsewhere, 

Lopes et al. explored the impact of different types of image pre-processing on model performance 

[17]. Results showed that combining data augmentation, rotation correction, cropping, down 

sampling with 32x32 pixels and intensity normalization yielded better accuracies than applying 

each pre-processing type in isolation. Some other approaches combined CNNs with LSTMs, to 
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capture the temporal dimension of image sequences for various applications such as video 

processing [18]. 

However, all the approaches described above have similar limitations. It is still an open 

research question regarding how to best obtain accurate FER in-the-wild, where illumination 

changes, occlusion, and different backgrounds can greatly challenge our models [19]. Also, the 

amount of available data in this area is limited, and many times it requires human annotation before 

it is readily usable for modeling [20]. Transfer learning is a common approach to solving those 

problems, as it repurposes knowledge acquired by other existing model architectures from large 

datasets of similar tasks and adapts them to new tasks [21]. Strategic initialization of network 

parameters allows the model to learn how to solve the problem at hand more accurately and faster, 

while needing fewer task-specific training examples. Bin Li [22] reported improvements in 

accuracy of up to 13% against other popular methods in the field when using ResNet-101 for TL.  

Promising results for FER have also been obtained by M. A. H. Akhand et al. [23] when using TL 

methods based on deep CNNs. 

Our aim in this research is to apply such TL approaches to FER during HAI in cooperative 

gameplay environments, in order to evaluate its utility in such task-oriented environments.  We 

further compare TL to using simply using pre-trained models from other tasks on the same dataset, 

in order to quantify whether it provides significant advantages or not. The paper is laid out as 

follows.  First, in Section 2, we describe the methods used and experimental design. In Section 3, 

we provide an overview of the modelling concepts explored and their theoretical background as it 

pertains to our experimental gameplay paradigm. In Section 4, we present the results of those 

models applied to our dataset. Section 5 provides a discussion of those results and our main 

conclusions. 

 

2. Methods 

2.1 Cooperative Game Environment 

To carry out experiments, a cooperative game environment provided by the video game 

‘Don’t Starve Together’ (https://www.klei.com/games/dont-starve-together) was employed, which 

was then modified for purposes of the experiments (as described in [7,24]). The game is publicly 

downloadable from online sources such as Steam. It is a social survival game, in which players 

must cooperate with each other and perform a variety of tasks such as resource collection or 
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monster fighting to ensure survival. Similarities can be drawn to other popular videogames of this 

type, such as Minecraft.  

As explained in [7], the game allows both single-player or multi-player mode, in which up 

to 6 players are allowed. In this experiment, multi-player mode was used, and limited to two-player 

games. One of these players was the human participant, and the other was an autonomous virtual 

avatar designed to test various HAR and related HRI concepts [7]. The experimental setup entailed 

different computers (“participant” computer and the “confederate” computer respectively), in 

separate locations, but connected to the same online server.  During the experiments, the avatar 

was run from the confederate computer, while a human confederate recorded the gameplay using 

the same computer (see Section 2.2 for data description). These experiments had a duration of 

thirty minutes and were conducted in a private room on the server to avoid interruptions.  

As the original experiment was aimed at studying the components of socially intelligent AI, 

many modifications were implemented to a “Game Mod” to explore a range of HAI hypotheses 

by allowing researchers to create customizable interaction scenarios. However, these modifications 

are not relevant to the current FER analysis as they focused on in-game behavior rather than social 

interaction outside the game, so details will be omitted here. Further information can be found in 

[7]. 

 

2.2 Experiments 

The data used in this research was derived from a series of focused experiments. As 

explained above, each experiment was comprised of a human player and an autonomous AI virtual 

avatar, which engaged in a 30-minute gameplay session. A total of 40 sessions were conducted. 

Out of these, 20 were conducted in Korean, and the remaining 20 were conducted in English. This 

attracted both Asian and Western participants to the study, implying that our system for FER would 

need to be able to recognize expressions irrespective of differences in physical facial features or 

cultural forms of expression [25]. During each experiment, several types of data were collected, 

including audio-video recordings, written game data, and several common HRI scales such as the 

Godspeed instrument [26]. However, for our goals we will only focus on the experiment video 

recordings from OBS (https://obsproject.com/) studio. These were used to create annotations for 

facial recognition analysis, test our models, and later as the source of our task-specific image 

corpus.   
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The general setup of the experiments was kept consistent throughout. A Zoom meeting 

connected the participant with the virtual avatar. The avatar was created through the Loomie 

application (https://www.loomielive.com/), and was capable of moving its lips while speaking 

autonomously as well as making basic expressions and gestures accordingly, in order to create a 

more human-like interaction. This Zoom meeting allowed player and avatar to freely interact 

through audio and visual channels. OBS was used to record the whole screen during experiments 

(both the game window and the Zoom window). An example of the setup can be seen below, in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

       Fig. 1 Experimental Setup 

2.3 Data Collection 

Once all the experiments were completed, it was necessary to extract the relevant 

information from the recorded videos to detect emotional responses to gameplay events and/or 

avatar interactions. In this case, the relevant data was related to the facial expressions of 

participants during the gameplay. We aimed to detect the 6 basic Ekman facial expressions: Happy, 

Sad, Surprising, Angry, Fearful, and Disgusting (plus a 7th “Neutral” expression, i.e. no expression), 

as these expressions have been shown to be produced in similar ways by people across different 

cultures around the world.  Though there is some more recent literature discussing potential cross-

cultural differences in the depiction of these expressions, the majority of prevailing evidence 

suggests a great degree of similarity across cultures despite those nuances [27, 58]. We thus 

adopted the latter assumption. Such an approach was necessary here, as we were dealing with 

participants from a wide range of social and cultural backgrounds. 
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Initially, we had 40 experiment videos from which to extract the needed data. However, 

roughly half of these presented quality problems for our purposes. The experiment room was 

specifically setup ahead-of-time to address lighting issues, which including blocking windows and 

providing frontal lighting for the participant’s face.  Nevertheless, in some videos the participant’s 

sitting posture and/or shifting in the seat during gameplay combined with variations in exterior 

light in the background made it difficult for current state-of-the art computer vision algorithms 

(see Section 3) to reliably detect the participants’ faces and/or facial expressions, which is a known 

issue with FER in naturalistic settings [19]. For that reason, those videos we judged as not meeting 

minimum quality standards were excluded from further analysis.  After that, we were left with 20 

videos from the experiments (10 Korean and 10 English speaking).  

The videos then needed to be manually annotated in order to provide ground-truth labels for 

later modeling.  An initial analysis showed that during gameplay, 89% of the time participants 

displayed a Neutral expression.  This is not surprising, as the majority of the time during gameplay 

participants were concentrating on playing the game rather than socially interacting [7]. Therefore, 

during manual annotation we adopted the strategy of assuming Neutral to be the base expression 

for any given moment in a video, and focused on annotating those times in the video in which the 

expression was different from Neutral. This meant a great reduction in the time needed to analyze 

each video.  The distribution of annotated facial expressions from the sample is displayed in Table 

1.  The predominant expression was Neutral, due to the reasons mentioned above. 

Table 1 Expression distribution in a sample of training videos 

 

For each experiment we derived an excel file, in which each row contained the starting and 

ending time for each of the expressions detected. A basic Power Query M script 

(https://docs.microsoft.com/en-us/powerquery-m/) was then used to reformulate this into more 

properly structured format, with the exact video frames linked to each expression being shown.  

 

Neutral Disgusting Happy Angry Sad Surprising Fear 

22698 1395 105 900 450 870 45 

https://docs.microsoft.com/en-us/powerquery-m/
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3. Modeling 

3.1 Modeling Overview 

The aim of this study was to develop an algorithm that, given real-time input (as a stream 

of visual images) during cooperative gameplay with a virtual avatar agent, is able to determine the 

probabilities of any given point in the input stream displaying each of the 6 universal Ekman facial 

expressions (plus “Neutral”). However, a challenge exists in this scenario as the human interactor’s 

attention is divided between the virtual avatar agent and the game itself, i.e. a shared attention 

context where social interaction is not necessarily the focal point [28,29]. The implication of that 

challenge is that the Ekman facial expressions may only occur sparsely, and further be inter-mixed 

with expressions of concentration or frustration related to the task rather than affective 

communication [30,31]. 

To address this, we developed a number of strategic approaches and weighting schemes for 

such a goal-oriented cooperative gameplay environment. At a high level, there is a series of basic 

steps we can follow. First, we need to detect whether there is an actual face in the image (Face 

Detection), and only after this can we apply some FER algorithm to predict the most likely 

expression (Facial Expression Recognition).  To establish a baseline, we tested how well pre-

existing pre-trained models would work in our experimental setup with our cooperative gameplay 

data.  After that, we explored the use of novel post-processing “criteria”, weighting schemes, and 

transfer learning in order to improve performance beyond the baseline.   

 

3.2 Face Detection 

Face Detection is a problem that has many real-world applications in recent times. We see 

it used in our smartphone unlocking system, the trendy ‘filters’ developed for social media, 

surveillance applications, and even in booths at the entrance of buildings where our temperature is 

measured for CoVID-19 purposes. However, technical methods to solve this problem have their 

origin further back, around 2001, with the developments made by Viola and Jones, popularly 

known as Haar Cascades [12]. Originally proposed as a “framework for robust and extremely rapid 

object detection” such as human faces, Haar Cascades are based on a sequential or cascade-like 

application of filters for edge/line detection where the information compounds from one filter to 

the next.  It includes 3 main components: integral image representation, AdaBoost for feature 
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selection, and attentional cascades. To understand this method, it is useful to emphasize that the 

process is based on the detection of areas with sudden changes in pixel intensities. Viola and Jones 

used three types of shape features in their implementation, referred to as two-rectangle features, 

three-rectangle features or four-rectangle features. They are shown in Figure 2. These shape 

features evaluate the difference between the average of the pixels in each region, where an edge is 

then detected if this difference value is close to 1. 

 

 

 

 

Fig. 2 Types of features evaluated by the Viola and Jones algorithm 

 

This system has been widely adopted because of its fast computation, through the use of the 

integral image. Each pixel is set to be equal to the sum of all the pixels above and to the left of 

itself (inclusive). We can express the value of each pixel in the integral image as: 

𝒊𝒊(𝑥, 𝑦) =  ∑ 𝒊(𝑥´, 𝑦´)

𝑥´≤𝑥 ,𝑦´≤𝑦

 

 

where 𝒊𝒊(𝑥, 𝑦) is a pixel in the integral image, and 𝒊(𝑥, 𝑦) is a pixel in the original image. This can 

be computed in only one iteration through the original image. Once computed, only 4 operations 

are needed to determine the sum of the pixels in a rectangle, regardless of their size. This increase 

in speed is also supported by the use of AdaBoost to reduce the number of features considered, as 

well as attentional cascades that greatly limit the amount of cases (i.e. parts of the image) to be 

considered. 

An example of what the first layer in an attention cascade during face detection looks like 

is shown in Figure 3. It is made up of two features; a two-rectangle and a three-rectangle feature. 

The first feature looks for any detectable edges in the eye and upper cheeks region. The second 

feature is based on the fact that eyes are normally darker than the upper-nose area, which it then 

tries to distinguish.  Combining these two features thus produces very reliable face detection 

through a relatively simple approach. 
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Fig. 3 First Layer of Haar Cascades obtained from [32] 

 

Haar cascades are a very powerful algorithm capable of accurately detecting faces in input images. 

Thanks to its implementation based on integral images and attention cascades, as well as the feature 

selection performed using AdaBoost, it still remains a very popular method in the field of 

Computer Vision (CV). It is also very easily accessible, as the model is available to download in 

GitHub (https://github.com/topics/haar-cascade-classifier), and only takes a few lines of code to 

implement. Likewise, we adopt that approach here. 

 

3.3 Facial Expression Recognition 

Once a face has been successfully identified in an input image, the task remains to 

determine which of the 6 universal Ekman expressions (plus Neutral) it is most likely to be 

displaying (if any). To do so here, we applied a variety of different modeling classification 

approaches (see next section). The output was a 7-dimensional vector, in which each vector entry 

expressed the probability of its associated emotion being displayed in the image. This approach 

allows one to predict the detected expression as the one with the highest score in the output vector, 

as well as implement various weighting schemes or other criteria based on the vector. There are 

several alternative methods to perform FER. For example, some methods rely on face-physics-

based models, or hand-coded facial features or landmarks into the model as a separate pre-

processing step [11]. However, we opted here for a deep learning approach where the 

preprocessing is directly integrated in the model pipeline. 

 

3.4 Modeling Approaches 

3.4.1 Pre-trained Model 

As mentioned above, the pre-trained models here are CNNs based on previous research 

[33]. They pose an advantage with image data over basic feed-forward Neural Networks (NN) 

because of the computational benefits of performing convolutions to simplify the task of matrix 



Facial Expression Recognition in Cooperative Game Paradigms 12 

12 

 

multiplications. Their application entails the use of convolution filters (i.e. kernels) that efficiently 

down sample the input data in a structured way to reduce the number of parameters needed to be 

learned, and as such CNNs are a very common tool when dealing with CV tasks. The first 

convolutional layers of the CNN pick up on simpler patterns such as edges, lines, curves, etc. Then 

the following convolutional layers build on top of that information, creating successively more 

complex representations of the input image. For example, considering the problem of FER, one of 

the intermediate filters might detect shapes resembling particular facial features (eyes, nose, mouth, 

etc.).  

Beyond the convolutional layers, CNN architectures typically include two other key types 

of layers, referred to as pooling layers and fully connected layers. Pooling layers are used to reduce 

the information passed on from the previous layer. To do this, it takes successive groups of pixels 

and applies a certain aggregation function to them. Fully connected layers, on the other hand, are 

those in which every node from the previous layer is connected to each of the nodes in the current 

layer. They are not technically convolutional layers in that sense because the weight of each of 

these connections can be different. Rather, they can be thought of as classification layers within 

the convolutional scheme, as they take the representation of the input data (after having gone 

through the previous pooling and convolutional layers) in order to calculate the probability of 

belonging to some category or class. The last final fully connected layer must have as many nodes 

as target classes in the given problem. 

The model architecture used for this paper is shown in Figure 4 [33]. We note that Dense 

layers in the figure are the fully connected (FC) layers mentioned above.  There are also some 

additional layers included for reshaping data tensors when necessary (Flattening) and to reduce 

overfitting (Dropout). Based on the model architecture of the pre-trained model, the  input image 

data must be grayscale with a size of (48 × 48) pixels, with 4 dimensions and normalized values 

in the range [0,1].  As such, we implemented those requirements as pre-processing steps on our 

gameplay video recording data prior to model usage. 
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Fig. 4 Pre-trained CNN architecture 

 

3.4.2 Transfer Learning Model 

Along with testing the pre-trained model pipeline shown above, we wanted to explore 

alternative approaches to dealing with the challenge of FER during cooperative gameplay with 

virtual avatar agents.  Our hypothesis was that the pre-trained models, although having been 

trained based on a similar task, may not capture the nuances present in a task-oriented HAI 

cooperative gameplay paradigm problem. As such, potential performance benefits might be 

obtained from creating a new approach, more specific to our problem. However, doing that from 

scratch is a formidable effort, which would furthermore also be limited in its broader applicability 

to other contexts beyond our specific task environment [7].  In short, the time needed to collect 

and label a big enough corpus of task-specific data was not feasible.  

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_1 (Conv2D)            (None, 44, 44, 64)        1664       

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 20, 20, 64)        0          

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 18, 18, 64)        36928      

_________________________________________________________________ 

conv2d_3 (Conv2D)            (None, 16, 16, 64)        36928      

_________________________________________________________________ 

average_pooling2d_1 (Average (None, 7, 7, 64)          0          

_________________________________________________________________ 

conv2d_4 (Conv2D)            (None, 5, 5, 128)         73856      

_________________________________________________________________ 

conv2d_5 (Conv2D)            (None, 3, 3, 128)         147584     

_________________________________________________________________ 

average_pooling2d_2 (Average (None, 1, 1, 128)         0          

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 128)               0          

_________________________________________________________________ 

dense_1 (Dense)              (None, 1024)              132096     

_________________________________________________________________ 

dropout_1 (Dropout)          (None, 1024)              0          

_________________________________________________________________ 

dense_2 (Dense)              (None, 1024)              1049600    

_________________________________________________________________ 

dropout_2 (Dropout)          (None, 1024)              0          

_________________________________________________________________ 

dense_3 (Dense)              (None, 7)                 7175    
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Transfer Learning is one proposed alternative to dealing with the above problem, which as 

mentioned in Section 1.2.2 has shown promising results when applied to FER tasks in other 

domains [34,35]. Transfer learning uses pre-trained neural networks as a base from which to build 

a more specific network for a particular problem in a given scenario. It takes advantage of the 

features already learned from the previous model, but fine-tunes the upper layers to interpret them 

within a new context. This means the needed resources for model development are not as high, as 

the bulk of learning is already done.  

The first step in transfer learning implementation is to create a training dataset that can fit 

the pre-learned model features.  To do so here, we took our previously manual annotations of  video 

gameplay recordings, determined which emotion was displayed in each frame, extracted the 

participants faces from the frames indicated, and then tagged the emotion labels onto each frame.  

There was also some re-structuring of the dataset required based on our data analysis, which is 

described in the Results section below.  After engineering the dataset for transfer learning, we used  

VGG16 as our convolutional base [36]. It has proven to work well with other FER tasks in previous 

research [35]. VGG16 model was trained on ImageNet, a dataset consisting of thousand different 

objects (including human faces) with millions of examples, on which it achieved an accuracy of 

92.7%.  It has also been verified on CK+, JAFFE benchmark datasets, with accuracies of 94.8% 

and 93.7% respectively. 

For transfer learning, we removed the final layers of VGG16 aimed at classification. We 

then replaced the final layers with a flattening layer and fully connected Dense layer specific to 

our cooperative gameplay paradigm. The final model´s architecture can be seen in Figure 5. We 

note the parameters from the VGG16 convolutional base were initially set to be non-trainable (i.e. 

“frozen”), so the model focused on training the final layers. After having trained our final layers 

for our specific problem with the base frozen, the base layers were “unfrozen” in order to optimize 

them,  i.e. what is known as “fine-tuning” in transfer learning.  
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Fig. 5 Transfer learning model architecture 

 

4. Results 

4.1 Pre-Trained Models 

For the first part of the research, we used the pre-trained models explained in Section 3.4.1. 

It is important to note that the model used was not further trained on our research data, but rather 

used as a baseline. It was used here to test how well “out of the box” models could operate on 

unseen data in an HAI/HRI scenario. These models operated on single images (i.e. single frame), 

outputting for each one a 7-dimensional vector where each of the entries corresponded to the 

probability of each facial expression being: Happy, Sad, Surprising, Angry, Fearful, Disgusting, 

and Neutral.  One issue of course is that facial expressions are not instantaneous, but occur over 

time.  There are 2 main possible approaches to deal with that: 1) analyze frames separately and 

then merge the result, or 2) extend the architectures used in 2D image modeling to 3D in order to 

capture the temporal dimension of data as part of the learning process, for example by 3D 

Convolutional Neural Networks [37].  The former approach is limited in scope for real-time 

problems such as ours where humans engage in cooperative games with interactive virtual avatar 

agents, so we focus on the latter approach here in this paper, based on pre-trained models from 

previous research  [38]. Those models utilized different approaches for temporal fusion, which can 

be seen in Figure 6. 

Layer (type)                 Output Shape              Param #    

================================================================= 

vgg16 (Functional)           (None, 4, 4, 512)         14714688   

_________________________________________________________________ 

flatten (Flatten)            (None, 8192)              0          

_________________________________________________________________ 

dense (Dense)                (None, 256)               2097408    

_________________________________________________________________ 

dense_1 (Dense)              (None, 3)                 771        

================================================================= 

Total params: 16,812,867 

Trainable params: 2,098,179 

Non-trainable params: 14,714,688 

_________________________________________________________________ 
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Fig. 6 Types of frame fusion proposed by [38],   Copyright © 2014, IEEE. 

 

In the previous research, four different approaches are taken to tackle the problem of fusing 

temporal information into the CNN architecture [38]. In Figure 6, the blue, red and green boxes 

symbolize different types of layers in the CNN. The Single Frame only considers one frame to 

derive the output (no temporality in data). It is used as a benchmark to test the other approaches. 

In the rest of the approaches, the general idea is the same. We connect the CNN output of different 

frame sets together, and then use a fully connected Dense layer to merge those outputs into 

predictions. In Late Fusion, we merge the results of two or more parallel CNNs with 50% overlap 

(i.e. if the total input size was 30, then they would be 15 frames between each input set). This 

allows for motion detection between frame sets that represents the delineation between different 

facial expressions. In Early Fusion, we combine information on the pixel level of T frames, by 

modifying the filters in the first convolution layer to a size of 11 ×  11 ×  3 ×  𝑇. This proves to 

be more useful in detecting local motion and speed within the frame set that may represent the 

muscle-movement production of individual expressions. Lastly, Slow Fusion combines both of 

these approaches. It applies various “pipelines” of Early Fusion on different temporal scales, and 

then slowly merges those together in progressive layers such that the final output has access to 

global information over a wider range rather than a fixed range.  

Although those fusion approaches yield promising results, they also add an extra layer of 

significant complexity and computational overhead to the modeling pipeline that is challenging in 

real-time environments [39]. Therefore, rather than fusion, here we adopted an approach that 

utilized post-processing “criteria” based on existing knowledge of human behavior during human-

agent interaction in cooperative game paradigms [7]. These were designed based on a preliminary 

analysis that showed that the vast majority of time, participants had a Neutral expression during 

gameplay, as their focus was concentrated on the game. Looking back at the average distribution 
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of emotions shown in Table 1 (see Section 2), it was clear that the simplest strategy was to always 

assume a given expression swas Neutral, and only predict other expressions when sufficient 

evidence was available to do so (i.e. beyond some threshold).  This entailed establishing a number 

of “criteria” that combined temporal information across a set of frames (“window”), based on 

various weighting and smoothing schemes.  Those criteria were then used by the models to 

evaluate whether sufficient evidence existed for predictions.  Results are shown below, with 

“Criteria” 0 being the raw predictions with no criteria applied. 

 

4.1.1  Criterion 1 - Weighted predictions 

Table 2 Average occurrence per expression 

 

In this criterion, we weighted the predicted probabilities by the overall average frequency 

of each expression, so that expressions that occurred more frequently in general (e.g., happy, 

surprising) were given more weight when determining the highest probability for a particular 

window (as shown in Table 2). For each frame window, this produced a weighted vector of length 

7, from which was computed its dot product. The predicted label for that window was then the 

facial expression  with the highest resulting value. 

 

4.1.2 Criterion 2 - Average expression over the last N frames 

This criterion aims at enforcing smoothness in our predictions. The gameplay videos are 

analyzed on a 15 fps basis. Therefore, in theory, 15 emotion changes are possible per second. 

However, we expect emotions to remain constant along a certain number of frames. This idea is 

reinforced by [40]. In the paper, it is described how emotions go through 3 main phases, from onset, 

to apex, to offset. This is represented in Figure 7. 

Emotion Neutral Disgusting Happy Angry Sad Surprising Fear 

Average Occurrence 89.72% 3.57% 0.99% 1.97% 1.33% 2.32% 0.1% 
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 Fig. 7 Stages of facial expressions. Image taken from [40], under 

creative commons license [CC-BY-3.0] 

 

For this reason, this criterion looks at the last N frames analyzed as the window, and then computes 

the average probability of each of the expressions for that window. Then, it selects the one with 

highest probability as the predicted label. By doing this, the predictions are smoothed out, and 

outliers would be counteracted by the rest of frames being analyzed in that specific window. 

 

4.1.3  Criterion 3 - EMA weighted predictions 

This criterion builds on the intuition that expressions will gradually build up to an apex, 

before starting decaying again. This time, exponentially moving averages (EMA) are used to 

materialize this idea. This implies that the probability of each emotion in the current frame will be 

weighted by the results yielded in previous frames within the window. Concretely, we are 

interested in EMA because it ensures that if probability of an emotion in previous frames was very 

low, it is not likely that it will suddenly jump up aggressively. Conversely, if the previous 

probabilities where high, it is more likely that the current frame also displays high probability of 

this emotion. By using EMA, the aim is to smooth out the predictions over an individual’s distinct 

idiosyncratic micro-expressions during the production of a facial expression, in order to more 

generally capture how facial expressions change over time in reality. This is illustrated in Figure 

8. It clearly shows how after applying EMA the peaks that we saw in the raw predictions are 

smoothed out, and a clearer pattern arises. 

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0
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Fig. 8 Raw predictions (left panel) vs after applying EMA (right panel) 

 

4.1.4  Criterion 4 - Minimum probability separation 

In this criterion, we return to the idea of always predicting a Neutral expression unless 

sufficient evidence is available to predict some non-neutral expression. However, in this criteria 

we consider this to be the case only if the difference between the probability of highest-ranking 

expression and the probability of the second-ranking expression is higher than a certain threshold.  

In this case, that threshold was set to 15%, based on experimentation (results not shown for brevity). 

For instance, if our algorithm predicts Happy with a 53% confidence, and Surprise with a 46% 

confidence, we would conclude that there is no strong evidence to conclude that the actual 

expression is any of these two, and defer to a Neutral prediction. However, if the predicted emotion 

is Happy with a 55% confidence, and the expression with the highest largest probability is Surprise 

with a 35% confidence, we can say there exists enough evidence to suspect the real label is Happy.  

 

4.1.5  Criterion 5 - Compact frame representation 

Lastly, criterion 5 is similar to criterion 2. However, instead of averaging over frames by 

calculating the average probability of each emotion, it creates a compact frame representation of 

the last N frames (a new image computed as the average of N other face images) [41]. Then, the 

algorithm is applied to this new image, yielding a single prediction. Once again, we then predict 

the expression with the maximum probability in our output vector. 

 

4.1.6  Criteria Results 

The results for each of the criterions proposed is shown in Table 3. We note that for criterion 

2 to criterion 5, we have also computed a weighted version for comparison, using the technique 
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explained in criterion 1. Note that this weighting did not affect the sample size considered. Rather, 

each original model output (a vector with one entry per emotion, depicting the probability of the 

corresponding facial expression being displayed) was scaled by the weighting vector, so that the 

total number of samples remained constant during analysis. 

 

Criteria Description Weighted Accuracy 

0 Raw predictions x 30.99% 

1 Weighted with average expression occurrence o 74.99% 

2 Average expression occurrence over the last N 

frames (N=15) 

x 31.02% 

o 79.61% 

3 EMA weighted predictions  

(N=15) 

x 30.83% 

o 81.72% 

4 Minimum probability separation  

(tsh = 15) 

x 47.23% 

o 85.92% 

5 Compact frame representation  

(N=60) 

x 20.40% 

o 66.33% 

Table 1 Criteria Results of best-performing mode.  (weighted= ‘o’, un-weighted = ‘x’). ‘N’ refers to the 

frame window size, if applicable. ‘tsh’ refers to the threshold size, if applicable. 

 

The best result is obtained when applying a weighted version of criteria 4 (in essence 

combining criteria 4 and criteria 1 together), with a performance of approximately 86%.  This is 

similar to current state-of-the-art performance in the mid-80s percent range for FER during video 

game play reported by other researchers [54, 55].   However, a closer inspection of the various 

confusion matrices for all criteria revealed that there were issues. For interested readers, those full 

confusions matrices can be found in the appendix in the online Supplementary Material. In short, 

our higher-performing models here tended to predict Neutral for most expressions, and thus the 

performance was mainly due to high specificity but limited sensitivity. This supports that our 

original strategy that we should predict Neutral unless otherwise indicated, but it also highlights 

that the criteria we designed were not sensitive enough to clearly delineate neutral from non-neutral 

successfully when using the pre-trained model. 
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4.2 Transfer Learning 

4.2.1 Data Restructuring 

It was hypothesized that the poor performance of the previously explored pre-trained 

models (Section 4.1) may be due to the fact that the algorithms used for FER were derived from 

pre-built model architectures, which lacked the sensitivity needed to clearly distinguish between 

neutral and non-neutral expressions in these cooperative task-oriented gameplay environments 

where human facial expression distribution is highly imbalanced and users are often focused on 

the game rather than social interaction itself [7]. Indeed, those users often have a look of 

“concentration” that resembles a neutral expression.  Although having been trained for with 

similar human facial expressions, the nuances present in this sort of HAI gameplay paradigm 

may not have been captured by that previous pre-trained architecture where the focus was more 

on the social interaction. Therefore, we set out to build our own model based on transfer learning, 

which was then fine-tuned with our cooperative gameplay experiment dataset.  

Given the challenges of distinguishing between neutral and non-neutral expressions using 

pre-trained FER models, the aim here was to classify each frame into Negative, Neutral, or Positive 

valence rather than individual facial expressions.  Due to the heavy imbalance in the original 

dataset (roughly 84.9% of samples were Neutral), we resampled the data via under-sampling to 

produce a more balanced dataset of 250 cases.  In the literature [42], emotional valence and arousal 

are the two primary axes used to categorize different expressions in a 2D space. Emotional valence 

describes the extent to which an emotion is positive or negative, whereas arousal refers to its 

intensity, i.e., the strength of the associated emotional state  [43-45]. The visualized space of 

emotions is depicted in Figure 9, as per Russell’s circumplex model. Our strategy here was to 

reduce the space of our transfer classes to make the feature adaption step of transfer learning more 

tractable, and therefore we limited the problem to the valence axis.  As such, all emotions were 

collapsed to a negative, neutral, or positive class as shown in Table 4. 



Facial Expression Recognition in Cooperative Game Paradigms 22 

22 

 

 

 

 

  

 

 

 

 

Fig. 9 Emotional dimension. Image obtained from [46], under license 

[CC BY-NC-SA 4.0], via ARROW@TU Dublin. 

 

Upon further analysis, there were some challenges with some particular facial expressions, 

such as Surprise, which are more dependent on the arousal axis rather than valence. For instance, 

in our cooperative game scenario there were situations where the human player was surprised by 

monsters (negative valence), but also other situations where surprise occurred in response to the 

virtual avatar sharing resources with players (positive valence). An example can be seen in Figure 

10. Thus to determine the appropriate valence category we used a data-driven approach, based on 

an analysis of game scenarios where those facial expressions occurred.  Since Surprise occurred 

77% of the time in what were judged to be positive valence situations, it was categorized as positive, 

as shown in Table 4. The final dataset consisted in a total of 2816 images. The split between 

training, testing and validation data per class can be seen in Table 5. 

 

Table 4 Target Class Transformation 

Original Angry Sad Disgusting Fear Neutral Surprising Happy 

New Negative Neutral Positive 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/
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Fig. 10 Surprise expressions showing different emotional valences (images slightly blurred for privacy 

reasons) 

 

 Train Test Validation Total 

Negative 778 105 155 1038 

Neutral 786 106 157 1049 

Positive 398 54 79 531 

Total 1962 265 391 2618 

        Table 5 Final dataset composition 

 

4.2.2 Transfer Learning vs. Pre-Trained Model Results 

The results for the transfer learning model on the restructured data can be seen in Figure 

11, visualized as a confusion matrix (with accuracy and F1 scores printed below). Categorical cross 

entropy was the loss function used. RMSprop was used as an optimizer, with a learning rate of 

1𝑒−4. Lastly, we optimized results with respect to the accuracy of the model.  The model was 

trained using a batch size of 20, for 1x5 epochs, and that with the best results was chosen. For fair 

comparison, we also tested our pre-trained model from Section 4.1 on the same set of restructured 

data and using the same 3 valence targets. Those results can be seen in Figure 12. 
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Fig. 5 Visualization of TL model performance on the test set 

 

 

 

 

 

Fig. 6 Visualization of pre-trained model performance on the test set 

As one can see, there is a noticeable difference between the TL model and pre-trained model.  

The TL model produced an accuracy and F1 score of around 94.3%, while the pre-trained model 

could only achieve around 60%.  Additionally, given the reduction in performance of the pre-

trained model from the mid-80% range in Table 4 to the results in Figure 12, the results further 

underscore the weaknesses of applying pre-trained models of human facial expressions to specific 

task-oriented environments.  Indeed, those environments often necessitate certain forms of 

communication, which is where transfer learning may hold significant advantages for FER. 

Critically, we also note that for both pre-trained and TL models the inference speed (i.e. when 

making predictions on unseen data) was less than 1 second per image in all cases, indicating that 

the TL models were still capable of being used in real-time like the pre-trained models. 
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5. Discussion 

5.1 Results Summary 

Our aim in this research was to apply FER during multimodal HAI in cooperative gameplay 

environments, and assess the utility of pre-trained models versus transfer learning models in those 

kinds of task-oriented environments that require cooperation and communication between a human 

and AI agent in order to accomplish some goal. The assessment comprised iterations of analyses 

of different computational approaches, which are summarized as follows.  The first approach 

(Section 3.4.1) attempted to use pre-trained models but proved to have unstable performance, 

which thus necessitated some post-processing of the results to ensure smoothness of the predictions. 

We further discovered it was necessary to engineer the post-processing criteria in a way so that 

Neutral facial expressions would be always assumed (i.e. “default expression"), unless sufficient 

evidence was given for any other non-neutral expression. This improved the raw predictions, 

though there was still a room for improvement, as the predictive power proved to be limited 

(maximal accuracy in the mid-80s) relative to human-to-human recognition accuracy of facial 

expressions, which has also been reported in the mid-80s by Ekman and other research groups 

[47,48]. Moreover, ideally as a tool for cognitive support, computer vision-based FER systems 

would enhance human performance, not simply replicate it. 

To address the above limitations, transfer learning based on VGG16 was evaluated (Section 

3.4.2). In order to accomplish this, the final layers of the VGG16 model were removed and replaced 

with custom layers specific to our HAI cooperative gameplay paradigm. After fine-tuning training 

of the TL model based on experiment data, this approach proved to have a great utility for FER 

recognition in  that sort of task-oriented environment without the need for an extensive task-

specific corpus, producing an accuracy and F1 score of 94.3%. That was a significant improvement 

over the pre-trained model performance, and shows the potential of TL to repurpose and adapt 

knowledge acquired from similar tasks to new tasks [21]. 

In short, HAI and HRI in cooperative environments tends to necessitate certain forms of 

multimodal communication to facilitate successful cooperation that goes beyond direct verbal 

communication, and transfer learning seems to be advantageous for detecting those kinds of 

communicative strategies (in this case non-verbal facial expressions) over generic pre-trained deep 

learning models for computer vision.  This has significant implications for the design and 

development of AI agents interacting multimodally with humans on cooperative tasks in the future 
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[49].  Given that up to 55% of human communication is conveyed through facial expressions [3], 

robust FER systems become a pivotal point in creating more life-like virtual avatars, capable of 

natural and fluid social interactions with humans. The development of these systems will not only 

allow virtual agents to better understand the context of communication, but also to create deeper 

interactions by mimicking these non-verbal cues. More broadly, these findings may also contribute 

to our understanding of the computational nature of coordination between human and robot 

interactors during HAI/HRI in real-world environments [50].  

 

5.2 Limitations and Future Work 

Although the results were satisfactory, there still remains many issues to deal with. In the 

field of FER, there are few datasets available, and many of these concentrate in lab-scenarios, 

where the conditions are very controlled. This greatly varies from what we find in real-life. 

Changes in illumination, occlusion and non-plain backgrounds are very common, but no dataset 

manages to capture these. This makes FER in-the-wild a very challenging task. The time 

complexity of algorithms used is also an issue. Although the systems are designed with the time-

constraints in mind, the processing and analysis of each frame is not as fast as it should, creating 

a certain ‘lag’ in the system. This may be solved by using a device with more resources, or down 

sampling the frames analyzed per second. Lastly, during multiplayer online games players are 

normally concentrated on the game, and very rarely show expressions different that neutral. 

However, expressions of boredom, frustration, and concentration are common during gameplay, 

which would be interesting to include in future analysis (they currently fall in the Neutral class).  

For future studies, vocal analysis and gesture recognition could be incorporated to create a 

multimodal system that more accurately interprets the emotional state of players.  Indeed, much 

social interaction is non-verbal and encompasses cues beyond facial expressions themselves [51]. 

Extending the multimodal input further would allow us to create a higher-level view of the 

interaction, and thus make more informed design choices for how the avatar behaves. Likewise, 

this would also allow the virtual avatar to autonomously engage in more fluid social interactions 

by picking up on subtle social cues during the interaction that belie any single mode of 

communication [52]. 
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