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Detecting Cultural Identity via Robotic Sensor Data to 

Understand Differences during Human-Robot Interaction 

Socially-assistive robots (SARs) have significant potential to help manage 

chronic diseases (e.g. dementia, depression, diabetes) in spaces where people 

live, averse to clinic-based care. However, the challenge is designing SARs so 

that they perform appropriate interactions with people who have different 

characteristics, such as age, gender, and cultural identity. Those characteristics 

impact how human behaviors are performed as well as user expectations of robot 

responses. Although cross-cultural studies with robots have been conducted to 

understand differing population characteristics, they have mainly focused on 

statistical comparisons of groups. In this study, we utilize deep learning (DL) and 

machine learning (ML) models to evaluate whether cultural differences show up 

in robotic sensor data during human-robot interaction (HRI). To do so, a SAR 

was distributed to user's homes for three weeks in the US and Korea (25 

participants), while collecting data on the human activity and the surrounding 

environment through on-board sensor devices. DL models based on that data 

were able to predict the user’s cultural identity with roughly 95% accuracy. Such 

findings have potential implications for the design and development of culturally-

adaptive SARs to provide services across diverse cultural locales and multi-

cultural environments where users’ cultural background cannot be assumed a 

priori. 

Keywords: human-robot interaction; deep learning; cross-cultural robotics; 

adaptive robot design; human activity recognition 

 

Word Count: 5875 (not including tables, figures, references) 

 

  



1. Introduction  

1.1. Background 

In existing cross-cultural studies in the field of human-robot interaction (HRI), 

some research has suggested that there is no significant difference across cultures in the 

way humans and robots interact, while other studies conversely have shown the exact 

opposite [16-19]. Generally speaking, many of those studies focused on statistical 

comparisons to identify differences between cultures.  However, the question exists 

whether statistical comparisons are the right way to evaluate those differences? 

Alternatively, we might instead ask whether proposed cultural differences in HRI would 

be detectable in robotic sensor data collected on second-by-second basis during human 

interactions over time.  If there are significant differences across cultures, then one 

might hypothesize that they would manifest in how the same interactive behavior is 

performed by people from two different cultural backgrounds, even if only subtly, and 

thus should show up differently in the robotic sensor data.  If so, we should theoretically 

be able to do the reverse of statistically analyzing differences based on known user 

cultural identity. Rather, we should be able to develop models that can predict the 

user’s cultural identity based purely on the robotic sensor data, even if the identity 

of a particular user is unknown. Indeed, in multi-cultural settings (something 

increasingly common in the modern world), the robot may not a priori know the 

cultural identity of a particular user.  Our goal here is to test the above hypothesis to 

evaluate its feasibility.  To do so, we focus specifically on robots designed for 

healthcare purposes in home environments. 

Socially Assistive Robots (SARs) are platforms designed to provide 

companionship and/or therapeutic benefits to patients outside clinical settings like 

hospitals, similar in some ways to the benefits of human caregivers [1]. In recent years, 



advances in medical technology, such as SARs, have enhanced our ability to manage 

long-term chronic diseases that are considered difficult to treat with minimal side 

effects, resulting in prolonged human lifespan and a higher quality of life. However, 

there are limitations to the current technology-based treatment approaches for such 

diseases that typically require intensive ongoing care and attention over the long-term. 

For instance, mental health disorders and neurological diseases, such as depression and 

dementia, often have repeated cycles of improvement and exacerbation, wherein a wide 

range of irregular symptoms and resulting behaviors may appear sporadically depending 

on the patient’s condition at any given moment in time. Such irregularity in patient 

status demands that SAR technology is flexible and adaptive to individual users. At the 

same time, hospitalization or frequent visits to the hospital to manage a disease in which 

symptom trajectory is unclear can be a great burden in terms of time and money for the 

patient and their families [2-4]. As such, more adaptive SAR technology is a necessity 

for reducing patient burdens. Recent epidemics such as COVID-19 have only reinforced 

the need for better home treatment models and remote treatment, particularly for older 

adults and patients with limited mobility that make frequent visits to medical facilities a 

challenge [5-7]. 

As one solution to the above issues, many types of SARs are currently being 

investigated experimentally in order to create better user adaptation in real-world 

settings. To do so, SARs are typically deployed in in-home environments, interact with 

users in a continuous fashion, and monitor their daily life through data collected via 

various sensors, with the ultimate goal to help care for patients as well as to support the 

analysis of their health condition status. From a clinical perspective, SARs have shown 

benefits in improving social skills in children with autism spectrum disorders (ASD) [8, 



9] and managing mental diseases such as dementia or depression problems in older 

adults [10-13], among other applications.  

One core component of this adaptive SAR approach lies in social interactions 

between the robot and the human, which provides users mental and social support to 

reinforce/sustain other ongoing treatment modalities (similar to a human caregiver or 

therapy pet) [14]. As such, SARs need to be able to reliably identify people's activities 

within the home and infer context-specific user intent of those behaviors in order to 

facilitate successful interaction. In previous studies, SARs with various sensors have 

been deployed to collect different types of potentially useful data, with machine 

learning (ML) and deep learning (DL) techniques applied to the collected robotic sensor 

data in order to identify human activities [15]. However, creating appropriate SAR 

responses in real-world settings depending on the contextual situation remains a 

challenge, particularly given the amorphous nature of the real world. For example, 

accurately identifying the behavior of a patient suffering from depression and then 

determining which response is most appropriate in the current situation to assist them is 

a challenge even for human caregivers. It is also unclear whether robots should perform 

different actions according to a user’s individual characteristics, such as their cultural 

background or ethnicity, or whether more universal responses would be appropriate. 

1.2. Research goal 

The goal of this study is to explore further evidence for the idea that the way people 

interact with robots is based on cultural setting and/or location. To do this, ML/DL 

techniques were used to train data collected by various sensors onboard a SAR deployed 

in user homes in different cultures, then test whether the models could distinguish the 

cultural identity of users performing a set of common in-home interaction behaviors 

with SARs. Detecting cultural identity holds potential to be used as a new means of 



creating adaptive behaviors for robots within the HRI field and, at the same time, can be 

expected to provide potential insights about the necessity to design robots in the future 

with different cultural-specific interaction behaviors. 

This study is divided into 5 chapters including the current chapter, Introduction. 

Chapters 2 and 3 introduce Related works and Methods, and Chapters 4 and 5 deal with 

Experiments, Results, and Discussion. 

2. Related works 

2.1. SAR in the HRI research field 

HRI is a research field related to understanding, designing, and evaluating robot 

systems for use by humans. There is a diverse range of domains covered by the field, 

including search and rescue, assistive and educational robots, entertainment, military 

and police, and space exploration [20]. Unlike the robots of the past, which were often 

focused on manufacturing/production tasks geared toward replacing human physical 

labor by performing simple and repetitive tasks, today robots are often designed to 

support humans via a broader array of social functions, such as by communicating with 

humans to assist in accomplishing collaborative tasks or providing companionship. 

Along those lines, one primary area of use for such assistive robots is in the 

medical field [21]. For instance, Robinson et al. (2014) provide a broad overview of 

robots with the functions required by older adults during activities of daily living 

(ADL), such as walking assistance robots, home care robots, injury prevention robots, 

and rehabilitation exercise robots, or robots being studied [22]. A similar application is 

the use of SARs for managing mental health conditions and monitoring health status in 

user homes via human-robot social interaction, rather than physically assisting with 

problems related to physical health [21]. Previous research has explored using SAR 



companion for a wide range of services designed for various target audiences (older 

adults, children, patients, relatives, caregivers) and various health-related functions (in-

home event notifications back to clinicians, video connection with caregivers, detection 

of dangerous situations like falls, cognitive stimulation, etc.) [23]. 

2.2. Human activity recognition and EMA 

Similar to activity recognition with robots, there are many studies using smartphones 

[24, 25], wearable devices [26, 27], and IoT devices equipped with various sensors for 

recognizing human activities, e.g. using accelerometer sensor data to classify specific 

types of ambulation such as walking, standing, and going up and down stairs [24, 26]. 

Lara et al. provide a good overview of the broad range of activity categories that have 

been the recent focus of research on human activity recognition, such as movement, 

modes of transportation, phone use, and activities of daily living like eating or sleeping 

[28]. 

One open question related to the above is how we can best make human activity 

discernible to the SAR based on its sensor data. One possibility is to develop ML 

algorithms that can classify sensor data patterns into identifiable activity. However, to 

do so requires ground truth labels that clearly connect human behavior to the sensor 

data patterns, allowing for the training of ML classifier algorithms following standard 

approaches in the field [29]. In previous studies, recall-based data collection techniques 

have been used to generate such ground-truth labels, e.g. questionnaires, phone calls, or 

interviews collected at the end of each day, week, or even the end of the entire 

experiment [11, 30]. However, a fundamental problem raised in existing human activity 

recognition research is that recall-based data collection techniques rely heavily on the 

user's memory after the experiment, which can be biased by human perceptions (or even 

influenced by later positive/negative events after the activity in question) and thus are 



not always accurate [29, 31-34]. Of course, if a SAR only has to classify a few, simple 

activities, it may be less likely that recall bias will be a major issue, but in practice 

SARs often need to classify complex and diverse human activities in real-world 

settings. Given that, recall-based techniques that rely on human memory to collect data 

have the potential to cause major errors in the long run. 

As an alternative to recall-based data collection, ecological momentary 

assessment (EMA) combined with SARs is currently being utilized in research studies 

in the HRI field and beyond [15, 27, 29, 31]. Unlike controlled environments that are 

artificially set up for experimentation, such as laboratories or hospitals, EMA-based 

data collection allows users to autonomously evaluate interactions in real-time, without 

direct observation by the researcher or doctor. Moreover, such interaction data can be 

obtained in real-world environments such as a home or workplace, serving as the basis 

for ground-truth labels of interactions in later analysis [15, 27]. The EMA method, 

which also can enable tracking of daily changes in health status even beyond the clinic 

walls, is a useful tool to relieve the constraints of healthcare-related research on SARs 

in terms of place, time, and cost [35]. 

2.3. Sliding window technique for catching human activities 

One of the most widely used sensors for human activity recognition are accelerometers. 

Accelerometer sensors have the advantage of compact size and low cost and are thus 

embedded in numerous consumer electronic personal devices, including smartphones 

and wearable devices [36]. Furthermore, because movement patterns can be calculated 

through x/y/z coordinate values, accelerometers can be seen as essential for identifying 

many human activities where the amount/type of movement are indicative of that 

particular activity. To accomplish that, it is important to detect the patterns of how the 

x/y/z coordinates change over time, i.e. the sequence information within the motion 



data. For example, such patterns can manifest as changes of direction occurring in 

sequence or the frequency of motion. 

The sliding window approach is a common method used to model temporal data, 

like the motion data described above for activity recognition. It is useful for detecting 

periodic activities such as walking or running or static activities such as standing and 

sitting. [37]. In general, sliding time windows are a fixed-size set of data (e.g. 5 

seconds) that are used for modelling purposes, starting from the first data point and then 

“sliding” along the dataset at some interval. Typically the time windows overlap, so 

each data point appears in multiple windows [15, 26, 28]. A wide range of window sizes 

such as 1sec, 2sec, and 10sec have been explored for human activity recognition in 

previous studies [37], but there is still no definitive answer for the optimal window size 

for a given activity. We return to this particular topic in the Methods and Results of our 

research below. 

2.4. Cross-cultural HRI Research 

We would be remiss not to mention at least briefly the broader topic of cross-cultural 

research in HRI, for which there is much existing literature. In general, cross-cultural 

studies are intended to understand the differences that may occur between groups based 

on effects of the cultural environment on human behavior, as well as the interplay of 

culture with other demographic factors such as race, age, and gender. In the field of 

HRI, research has been conducted on whether the interaction between humans and 

robots leads to the same results across groups with different cultural characteristics [16-

19, 38-41]. For instance, Andreasson et al. (2018) studied the difference in the way 

emotions are conveyed to the robot through the tactile sense between men and women, 

and there was no difference in the frequency or intensity of touch, but it was found that 

women interacted longer than men in certain emotions [16]. Elsewhere, Anzalone et al. 



(2019) performed a comparison between children with Autism Spectrum Disorder 

(ASD) and the Typical Development (TD) group on behaviors that draw attention from 

robots and the results showed that the ASD group showed a significantly lower interest 

in the robot's behavior [18]. Another study investigated how robot therapy with autistic 

individuals differs depending on the cultural background between patients from Asian 

and Eastern European cultural backgrounds and found significant differences [19]. A 

particularly interesting example can be seen in a study that investigated differences in 

greeting practices by country and its relevance to HRI [42]. Compared to robots 

greeting with general gestures that are widely used around the world, greeting with each 

culture's native gesture was shown to make users feel closer to the robots and increase 

ratings of likeability towards the robot.  

In summary, understanding cultural differences and their impact on HRI can 

potentially contribute to the improvement of robot design and the development of more 

personalized, culturally-adapted robot services in the future. Our study here contributes 

to this broader body of cross-cultural HRI research, though our focus is specifically on 

applications to SARs. 

3. Methods 

3.1. Experimental Protocol & Data Description 

The data used in this study were based on an EMA sampling approach for social robot 

interactions described in Bennett et al. (2021) [29]. The dataset consisted of 

approximately 250 million data samples collected from 25 participants (Korea - 13, US 

- 12).   However, technical issues with data collection leading to partial data loss caused 

us to exclude 4 people from this analysis, leaving us with 21 total participants analysed 

here. The participants were drawn from the general population aged 20-35 years old and 



roughly 70% female. In previous experiments though, we have detected no gender 

differences with these kinds of robots [15], while the age range was a limitation due to 

the study being run during the coronavirus pandemic (normally we work with older 

adults).  For the experiment, a robot sensor collar (Figure 1) developed at Mississippi 

State University was worn on Hasbro's Joy-For-All robot companion cat (Figure 1) and 

deployed to the participant's home.  The study followed a convergent parallel mixed 

methods strategy [43], where the focus is on collecting a large amount of detailed data 

about each user rather than sparse data amount many users.  The experiment was 

conducted for 3 weeks, and during the experiment, sensor data was collected through 

the collar roughly 9 times per second, and real-time data on the interactions was 

collected through the ExpiWell EMA mobile app (https://www.expiwell.com) using an 

EMA sampling approach described below. We have made a cleaned-up version of the 

dataset publicly to the Dryad Repository for other researchers to use, which can be 

accessed at this link: https://doi.org/10.5061/dryad.tb2rbp078  

 

Figure 1. Sensor Collar 

 

https://www.expiwell.com/
https://doi.org/10.5061/dryad.tb2rbp078


 

Figure 2. SAR with sensor collar 

 

The collar has built-in sensors that collect data such as movement (x, y, z 

coordinates), light, sound, and environmental conditions (temperature, air pressure, 

humidity, air quality). That sensor data was used as the input features for modelling in 

the study here, while the target class to be predicted was the cultural identity of each 

participant (Korean or US). Previous studies have shown that such sensor data can be 

used to detect specific human interaction behaviors with roughly 80% accuracy [15, 

29]. However, the primary question here was whether that same sensor data could also 

predict the cultural identity of the user. In other words, could the robot detect the 

culture of the user, based purely on its sensor data patterns. 

The description of key features used as input is shown in Table 1. In order to 

collect data on naturalistic interactions in real-time, a notification ping was sent to the 

users smartphone approximately 5-7 times randomly throughout the day (following a 

standardized EMA protocol [29]). The six interaction behavior modalities collected 

through EMA in this study were “Playing”, “Talking”, “Petting”, “Listening to Media” 



(TV, radio, YouTube, etc.), and “Moving a robot”, based on previous research in this 

domain [29]. A total of 585 direct and indirect interactions with the robot were analyzed 

here, comprising roughly 146 hours of total data. 

Table 1. Feature List 

Category Features Description 

Accelerometer accX, accY, accZ 
Motion amount from the accelerometer in x, y 

(lateral), and z (up/down) directions 

Rotation arc Amount of rotational motion during interaction 

Light sensor light Raw values from the light sensor 

Sound sensor audioLevel Raw values from the sound sensor 

Sound category Quiet, Moderate, Loud 
Specific sound categories detected based on 

sound sensor thresholds 

Air quality sensor 
IAQ, co2Equivalent, gasResistance, 

breathVocEquivalent 
Raw values for indoor air quality 

Environmental sensor temp, pressure, humidity 
Raw values for indoor environmental 

conditions 

Orientation category 

Portrait Up Back, Portrait Up Front,  

Portrait Down Back, Portrait Down Front,  

Landscape Left Back, Landscape Left Front, 

Landscape Right Back, Landscape Right Front  

Specific orientation categories detected based 

on accelerometer thresholds 

3.2. Exploratory Data Analysis 

The data distribution for US and Korean participants for each interaction 

modality are shown in Table 2. The distribution of interaction types with the SAR is 

similar in both groups. However, there were a couple exceptions. In the US group, the 

proportion of moving robot pets was nearly three times that of Korea, and in the Korean 

group, the proportion of watching media (e.g. TV, radio, YouTube) was about twice 

that of the US group. Those differences likely relate to differences in home living 

environments and lifestyles between the US and Korea, which have been reported in 

previous studies based on OECD data [15, 44]. In short, lifestyle differences between 

the two locations lead to differences in the physical built environment, which 



subsequently effect how certain behaviors are performed and their frequency as well as 

indoor environmental conditions. 

Table 2. Basic Information 

Modality 

US Korea 

interaction time (min) sample rate interaction time (min) sample rate 

Playing 9 135 98744 4.1% 15 225 105534 4.3% 

Talking 35 525 397502 15.9% 39 585 274629 11.2% 

Petting 77 1155 893629 35.0% 116 1740 816775 33.3% 

Media 35 525 405797 15.9% 118 1770 830851 33.9% 

Eating / Cooking 16 240 185188 7.3% 33 495 232382 9.5% 

Moving it 48 720 562655 21.8% 27 405 190275 7.8% 

Total 220 3300 2543515 100% 348 5220 2450446 100% 

 

As an initial sanity check, we visualized the sensor data to compare the two 

cultural groups to see if there were noticeable differences visible to the human eye. 

Those results were mixed. There were differences between the two cultures in terms of 

accelerometer, humidity, air pressure, and gas resistance sensor data, but there were no 

differences between the two cultures in terms of light, sound, temperature, CO2, and 

IAQ sensor data. As an example, Figure 3 shows a three-dimensional visualization of 

the distribution of the accelerometer data (x, y, z values) for movement by several 

interaction behavior modalities. There seems to be a difference in the movement 

between cultures based on these visualizations, comparing the US (orange) and Korean 

(blue) participants. Regardless, a statistical comparison of group averages was not the 

point of this study, as we were focused on ML/DL modelling which we describe below. 



 

Figure 3. 3D visualization of data distribution (x, y, z values) 

 

3.3. Preprocessing 

The goal of preprocessing in ML/DL is to optimize the dataset in order to improve 

performance of the resulting models. Various preprocessing methods can be applied 

depending on the data used or how the problem to be solved is defined, such as 

removing error values, filling in missing values, dealing with outliers, and data scaling 

techniques (e.g. normalization). Several preprocessing methods were used in this study, 

which we detail in the subsequent sections.  

3.3.1. One-hot encoding 

Since a computer can only understand numeric values, it is necessary to convert data 

composed of other types into numeric data. Most of the features used in this study 

(Table 1) are numerical data, but since some fields such as orientation category and 

sound category were categorical data, a one-hot encoding process was performed to 

convert the categorical data to numerical data as shown in the example below (Figure 

4). 



 

Figure 4. One-hot encoding 

3.3.2. Scaling 

When using data as input to a machine learning or deep learning model, the model 

generally uses only the size for features without considering the units of each data. A 

large difference in the scale between different features or outliers that significantly 

deviate from the general data distribution can cause problems in the performance of 

ML/DL models. For example, if we were modelling home sale data, then the price of 

the home may be on the order of 0 to 1 million, while the number of bedrooms may be 

more like 1-4. Both are numbers, but the scales are vastly different, which can lead to 

some models over-emphasizing the home price feature at the expense of the number of 

bedrooms feature. Likewise, our dataset here included sensor features with vastly 

different scales, so normalization was performed to adjust the data range. 

3.3.3. SMOTE 

SMOTE is a widely used technique for resolving data imbalance problems. If the 

number of each target class used for model training is significantly different, most of the 

data will typically be classified as the most common class, which adversely affects the 

performance of ML/DL models. The problem can be mitigated through various class 

rebalancing methods or weighting schemes. In order to prevent class imbalance 

problems here, the input training data for modelling was adjusted using hybrid 



rebalancing methods known as SMOTE in order to produce a balanced dataset [45]. 

3.3.4. Dataset Restructuring via Sliding time windows 

As described in Section 2.3, sliding time windows are commonly used to deal with 

temporal modelling problems. Human activities typically unfold over time (e.g. a few 

seconds or minutes) rather than occurring instantaneously. Think of sitting in a chair, 

for example. There is a sequence of movements that occurs over several seconds in 

order to go from standing up to sitting down. In order to make use of time series data 

with such time dependences in a predictive model, it is necessary to reconstruct the 

information in the form of a fixed window that can provide the model with “snapshots” 

of the data at a given point in time for modelling sequences of movement. However, in 

order to set an appropriate window size, one must consider how different activity types 

unfold. For example, during a 15-minute mealtime, a similar type of movement of 

picking up food and putting it in its mouth is repeated as one eats. If it takes about 3 

seconds to pick up food and put it in the mouth, then it is appropriate to set the window 

size to 3 seconds to detect each instance of that activity. However, for a different 

activity that takes longer to unfold, such as petting an animal, a window size of 5 

seconds or 10 seconds or even longer may be more appropriate. It is still an open 

question what window size would be best for detecting various human interaction 

activities during HRI.  

As such, in this study, the amount and frequency of sensor data (i.e. “features”) 

collected at each time were considered for use of 8 window sizes (1, 2, 3, 5, 10, 20, 30, 

60 seconds) for comparison purposes. The resulting data for analysis utilizing the 

sliding time windows can be visualized as a 3D matrix as shown in Figure 5, with each 

row of data forming the y-axis, the features forming columns in the x-axis, and the 



sliding windows being a third z-axis. Each interaction was essentially then represented 

as a cube and used as input feature data for modelling (Figure 6). 

 

Figure 5. Creation of sliding time window 

 

 

Figure 6. Example of input data for modeling (based on method in Figure 5) 

3.4. ML/DL Modelling Approach 

The modelling method used to predict the cultural identity divided each 15-minute-long 

interaction into a sliding window as in the prior studies performed in 2021 [29] and 

2022 [15], with each window was set to overlap the data in the previous window by 



50% [24, 25, 29]. An example of how the input “feature” dataset (for both ML and DL) 

were created from the raw sensor data is shown in Figures 5 and 6 in the previous 

section, though there was some subsequent post-processing for the ML analysis 

described below. To test whether such sensor data can be used to predict the cultural 

identity of the participant, the culture of the participant was coded as 0 (US) or 1 

(Korea), which was then set as the “target” class for modelling.  The target class was 

then appended on to the feature dataset, along with the interaction modality type of each 

interaction so that we could also later analyze specific interaction modalities separately 

for comparison. 

ML models were built using the Python package SciKit learn, including random 

forests, gradient boosting, ada boosting, and support vector machines (SVMs). Models 

were generally run using the default parameters in Scikit. Results were evaluated using 

5-fold cross-validation based on accuracy and AUC metrics, following standard ML 

guidelines [46]. For the ML models, the feature data cubes (described in Figures 5 and 6 

in the previous section) were collapsed down into a single row of data per interaction, 

by taking averages or percentages/frequencies for each feature across all the sliding 

time windows across the 15-minute interaction period. Feature selection was also 

performed as part of the ML analysis, based on a wrapper method using random forest, 

which removes features of low importance relative to the target variable by building 

multiple models with different subsets of the features, then identifying a subset with the 

best performance. 

DL models were constructed using the Python package Keras. DL models 

explored included recurrent neural networks (RNN) such as long-short tern memory 

(LSTM) and gated recurrent units (GRU), as well convolutional neural networks 

(CNN).  To evaluate performance, 20% of the data was held out as a test set for each 



classification run, while the remain 80% of the data was used to train the models. The 

DL models used the feature data cubes described in Section 3.3.4 directly, rather than 

collapsing the data as was necessary for the ML models above.  In terms of the DL 

model architectures more specifically, they comprised a series of layers (either RNN or 

CNN) up to 10 layers, with pooling layers in between as necessary.  However, we found 

beyond just a few layers provided little performance benefit, so the DL results reported 

here are from those more parsimonious models. We also evaluated stacking RNN and 

CNN layers as combined models, in different combinations, as well as varying the unit 

size of layers and filter/kernel size. After experimentation, the optimal unit size for 

those RNN layers was determined to be around 200, while the optimal CNN layers were 

found to have filter size of 26 with kernel size of 8. In short, the final models generally 

comprised 5 layers, including an initial input layer, 2 RNN layers, 1 CNN layer, and a 

final Dense output layer using Softmax to make the final prediction.   

We note that the order of the CNN and RNN layers varied for comparison, 

which are shown in the results below.  Using DL model combinations with CNN layers 

first followed by RNN layers second did provide optimal performance, so those settings 

were subsequently used to evaluate the effects of different sliding time window sizes 

(ranging from 1 second up to 60 seconds) on compare model performance, which we 

describe in the 2nd half of the results below. 

4. Results 

While it is possible to perform a statistical comparison of the two cultures to evaluate 

differences during HRI, our analysis goal here was to test the feasibility of creating a 

predictive model that could detect cultural identity purely based on robotic sensor data, 

which could be of particular use for autonomous robots who are not yet sure with whom 

they are interacting. This section describes the prediction results of ML and DL models 



for cultural identity, including a comparison of different size sliding time windows and 

feature selection. 

4.1. Cultural identity prediction 

4.1.1. ML models 

Table 3 shows the results of the various ML models. The model performance was fairly 

consistent across the different modelling methods, producing maximal accuracy scores 

around 90% with AUC of 0.94. Since collapsed data was used for the ML models, the 

reliability of the results was relatively low compared with the DL models, as indicated 

by the higher standard deviations of the accuracy and AUC scores (compare with table 

5 in the next section).  

Table 3. Cultural identity detection based on ML 

Model Accuracy AUC 

Random Forest 91% (+/- 8) 0.94 (+/- 0.07) 

Gradient Boosting 90% (+/- 8) 0.94 (+/- 0.06) 

Ada Boosting 91% (+/- 8) 0.94 (+/- 0.07) 

SVM 86% (+/- 10) 0.87 (+/- 0.10) 

 

Beyond that, the feature selection analysis found that 9 out of 43 features play an 

important role in predicting cultural identity based on robotic sensor data during HRI. 

Interestingly, the majority of those selected features (6 out of 9) were motion-related 

features (see Table 4). That may suggest that motion is more indicative of a user’s 

cultural identity rather than sensor data related to light, sound, or other environmental 

conditions. In other words, there appear to be some detectable cultural differences in 

how users move when performing the same type of interaction modality.  Some of those 

movement differences may relate to differences in physical home living spaces between 

Korea and the US mentioned in Section 3.2. For example, different physical layout 



might create different orientations of the person and robot during common interactions 

if there is less floor space, so that those interactions occur on furniture (table, bed, etc.) 

rather than at floor level.  Or if the person is required to physically move the robot from 

room to room in a larger house.  However, that may not fully explain movement 

differences within the same interaction modality, and there may something more subtle 

in terms of normal interpersonal distance or appropriate physical contact that varies 

across cultures affecting the human and robotic pet interactions here. More work would 

be needed (e.g. intensive case studies with a small number of users repeating the same 

behaviors over and over) in order to try to identify the specifics of those differences. 

Table 4. Feature selection results (selected features) 

 Feature 

1 accX 

2 accY 

3 accZ 

4 light 

5 humidity 

6 Moderate 

7 Portrait Down Back 

8 Landscape Right Back 

9 Landscape Left Back 

 

4.1.2. DL models 

We also evaluated whether various DL models could accurately detect the cultural 

identity of human users during HRI. Results can be seen in Table 5. Those models 

generally produced accuracies and AUC scores in the mid-90s. The top-performing 

models combined CNN and RNN layers (CNN-LSTM, CNN-GRU), producing 

accuracy scores ~95% with AUC near 0.96. It has been previously reported with such 

HRI robotic sensor data that combining CNN and RNN layers in a single model 



provides performance advantages for theoretical reasons [29]. 

 

Table 5. Cultural identity detection based on DL 

Model Accuracy AUC 

LSTM 92.73% (+/- 2.66) 0.9581 (+/- 0.0268) 

GRU 93.76% (+/- 2.23) 0.9756 (+/- 0.0097) 

CNN-LSTM 94.87% (+/- 1.53) 0.9580 (+/- 0.0126) 

CNN-GRU 94.96% (+/- 2.18) 0.9594 (+/- 0.0210) 

 

Additionally, we were curious if for the top-performing DL models (in this case CNN-

LSTM), whether it would be possible to predict the cultural identity based on individual 

interaction modalities by themselves, rather than the whole dataset. The results of that 

can be seen in Table 6. Those individual modality predictions averaged an accuracy of 

about 81% with AUC of 0.84, which was much lower than the overall performance of 

95% accuracy reported in Table 5 above. The performances of individual modalities 

also ranged widely, from just 71% accuracy for the Talking modality to near 86% 

accuracy for the TV/Media modality. Regardless, though performance is suboptimal for 

the individual modalities relative to the overall predictive performance, 81% is not that 

bad for a binary prediction problem, and there may be situations where trying to identify 

a user’s cultural identity during HRI based on a single interaction modality could be of 

utility. 

Table 6. Cultural identity classification performance for each modality 

Modality Accuracy AUC 

Playing 82.00% (+/- 14.00) 0.8760 (+/- 0.1124) 

Talking 70.67% (+/- 6.80) 0.7382 (+/- 0.0799) 

Petting 84.64% (+/- 3.63) 0.8921 (+/- 0.0265) 

Media 85.81% (+/- 3.59) 0.8811 (+/- 0.0382) 

Eating / Cooking 77.00% (+/- 9.00) 0.7890 (+/- 0.0969) 



Moving it 84.00% (+/- 10.41) 0.8756 (+/- 0.1030) 

Average 80.98% (+/- 7.91) 0.8420 (+/- 0.0761) 

 

Finally, we also compared the performance of different sliding time window 

sizes, to see if they impacted DL model performance (again based on CNN-LSTM). 

Eight window sizes were tested. A 5-second time window was used as a “baseline” in 

the models reported above, based on previous research [11,15,29]. So, the question here 

was whether other window sizes would perform better than the baseline. Results can be 

seen in Table 7. We note that the 1-second time window showed the lowest 

performance, while the 10-second time window showed the highest performance (Table 

7). However, the 10-second window showed only marginal improvement beyond the 5-

second window (95.4% vs 94.9% accuracy), which was not significantly different. We 

also note that for window sizes of 20 seconds or longer, performance gradually reduced. 

Given that, we can ascertain that there appears to be an optimal window size around 5-

10 seconds for detecting cultural identity via robotic sensor data during HRI, at least for 

the set of interaction behaviors examined here. 

Table 7. Exploring the optimal window size for performance improvement (CNN-LSTM) 

Window size Accuracy AUC 

1 second 90.86% (+/- 2.81) 0.9389 (+/- 0.0151) 

2 second 91.37% (+/- 3.39) 0.9442 (+/- 0.0185) 

3 second 92.65% (+/- 1.96) 0.9425 (+/- 0.0193) 

5 second 94.87% (+/- 1.53) 0.9580 (+/- 0.0126) 

10 second 95.39% (+/- 1.49) 0.9632 (+/- 0.0144) 

20 second 94.19% (+/- 1.61) 0.9566 (+/- 0.0129) 

30 second 94.36% (+/- 2.57) 0.9560 (+/- 0.0193) 

60 second 93.93% (+/- 2.18) 0.9635 (+/- 0.0204) 

 

 



5. Discussion Conclusion 

5.1. Summary of Results 

The purpose of this study was to evaluate whether it is possible to use ML/DL models 

to detect cultural identity of human users during HRI based purely on robotic sensor. 

Results showed that it was indeed possible using a dataset of 21 US and Korean 

participants and over 145 hours of in-home interaction data collected via EMA 

sampling techniques. A variety of ML and DL modelling techniques were evaluated, as 

well as different window sizes for temporal modelling. The best performing models 

built on that dataset attained roughly 95% accuracy. Interestingly, we also found 

that robotic sensors related to motion tended to be the most important in distinguishing 

between cultural identity, which suggests there may be something subtle about the way 

people move when performing the same interactive behavior modality that distinguishes 

their cultural background. 

The idea behind this study originated from results of deep learning models for 

the two cultures in our own previous research [15], as well as questions arising from 

other researchers’ cross-cultural HRI studies in the related work section (Section 2). In 

those studies, models generated to fit data collected within a specific culture suffered 

significant performance degradation when applied to other different cultures.  In other 

words, the idea we can create universal behavioral models for in-home robotic pets or 

other social robots that will work anywhere in the world is not likely to be a successful 

strategy [47].  Generally speaking, we are all cognizant that there may likely be 

differences that occur during HRI depending on the cultural background of users. 

However, except for simple cases, such as eating behaviors where we see the use of 

chopsticks in East Asian countries versus the use of forks in Europe and US, there 

hasn’t been much research on how cultural differences in the way a particular behavior 



(e.g. eating) manifests may impact interactive autonomous robots in users home and 

work spaces. Moreover, various cultural differences can also cause different ways of 

thinking resulting in different behaviors entirely.   

One clear takeaway from the findings presented in this study is that not only is 

more research is needed, but the right kind of research.  Currently, many cross-cultural 

HRI studies utilize statistical techniques to analyse differences in user behaviors across 

cultures at the population level, but there are limitations to that approach. Namely, it 

fails to evaluate the inter-individual differences in how the same behavior is performed 

by people of different cultural backgrounds, and only focuses on whether different 

groups perform behaviors with different frequencies. Therefore, in order to generate 

further evidence that the way people interact with robots is influenced on their cultural 

region or environment necessitates research like the kind performed here, where cultural 

identity predictions were attempted by inversely using data generated from interactions 

with robots to predict a user’s cultural background. In particular, that allowed us to 

evaluate if that same interaction behavior performed by users from two different 

cultural backgrounds was significantly distinguishable, based purely on robotic sensor 

data. As the results showed here, they are indeed quite distinguishable, which 

potentially opens up new research opportunities to explore ways that autonomous robots 

can be designed to take advantage of that phenomenon. 

5.2. Implications 

This study has a number of implications for HRI researchers, across a variety of 

domains. For instance, in a healthcare setting, we could think about the implications for 

developing an adaptive SAR that is deployed for medical purposes for older adults who 

need continuous in-home care in daily life, such as depression or dementia. In 

particular, due to the nature of the medical field where even a slight error is difficult to 



tolerate in checking a patient's health condition, the ability to more precisely and 

accurately classify human behaviors based on their cultural background may be of use 

for remote monitoring or tracking fluctuations in the patient’s activity levels and health 

status. 

Keeping with that same example, currently medical data is often collected and 

utilized only within a specific region and/or country, but one could envision the utility 

to understand and utilize underlying cultural differences to provide global medical 

services beyond the scope of a specific country. Beyond robots, one could imagine 

using information drawn from behavioral data and sensor data from other types of 

devices in a similar manner to that described in this paper in order to detect a person’s 

cultural identity, or otherwise to build an ML pipeline to classify input data by 

geographic locations or create a healthcare model optimized for a specific geographic 

location. 

Within the domain of HRI more broadly, creating robots that can understand the 

cultural background of users holds promise for designing better interactive robots in the 

future. Such robots may be better able to autonomously adapt their behaviors, better 

aware of what the human is actually doing in particular scenarios, and thus ultimately 

perform more appropriate responses to humans over the long term [48].  To that end, 

one significant implication of this research is that doing so will require more research 

into the socio-cultural aspects that influence human behavior towards robots.  Not only 

in a qualitative sense, but also related to how those socio-cultural aspects subtly affect 

data that roboticists may use to generate ML/DL models for autonomous robot 

behavior.  That may be of particular relevance in multi-cultural settings, where the 

cultural identity of the user may not be known to the robot a priori. Undoubtedly, 

such multi-cultural environments are increasing in frequency in our modern globally-



interconnected world, and misunderstanding subtle social cues in such environments 

results in robots that are essentially socially inept [49].  In our view, that is currently a 

serious oversight amongst the HRI community. 

5.3. Limitations 

There were a number of limitations of this study which are important to keep in mind. 

First, one major limitation of the study was data-related. Originally the study was 

designed as a long-term in-home user study over the course of several weeks with each 

participant, featuring a total of 25 participants (12 US, 13 Korea). The plan was to 

collect all that data over a 6-month period. However, long-term in-home studies are 

notoriously challenging, and ours was no different. Due to a number of technical issues 

that caused partial data loss, as well as one participant’s non-compliance with study 

protocol, we were left with 21 participants for this particular analysis. 

Beyond that, a second challenge was the EMA sampling approach used. While 

EMA does produce more naturalistic data, it also results in more sparse data since one is 

only randomly sampling 5-7 times per day rather than continuously across time. That 

resulted in some sparsity in the analysis dataset used for the predictive models, where 

some activities had a limited number of examples despite data being collected for each 

participant over several weeks. 

Third, since most of the participants in Korea and the United States were 

university students (mostly in their 20s), there are limitations in terms of the study 

population. Different age groups or socioeconomic groups may produce different results 

or interact with the robot in different ways. Therefore, it is necessary to collect data 

from more diverse populations, as that is known to impact HRI [15,16, 37, 39, 40].  It 

would also be interesting to compare immigrant groups living in other cultural 



environments (e.g. Asians living in the US, or vice versa), which is something we did 

not do in this particular study. 

Finally, there are also some limitations in terms of experimental design. Various 

additional sensors could be used to collect surrounding environment data off-board the 

robot to provide a broader understanding user home environment. Similarly, sensor 

collar capabilities could be enhanced through interoperability with surrounding internet-

of-things (IoT) devices, to extend their scope. Likewise, to accurately detect the user's 

movements, rather than using sensors only on the robot's collar, wearable devices could 

be deployed. We in fact ourselves are exploring integration of different technologies in 

ongoing research studies. In short, there is a myriad of possibilities. However, as other 

HRI studies have shown, we would note that generally does NOT include cameras in 

people’s homes, as users find it uncomfortable and a serious privacy concern to have 

cameras or audio recording devices in their living space [50]. In regard to personal 

information protection, it is necessary to establish ethical standards to ensure the best 

interests of users while preventing data from being used for questionable purposes or 

shared indiscreetly with others [51, 52]. 
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