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ABSTRACT
∗Socially-Assistive Robots (SARs) hold great potential to revolu-
tionize the way we manage chronic illness outside clinical settings,
but a current limitation to their broad adoption for this purpose is
the lack of “ground truth” around interactions between robots and
humans in in-home settings. Such ground truth is a necessity for
using robotic sensor data for machine learning models of patient
activity patterns or to create AI to customize robotic interactive
behavior autonomously. Traditional subjective recall-based data
collection methods lack the fine-grained temporal detail to support
such AI development, as well as suffering from “recall bias” effects.
One potential solution to this challenge is to adapt novel forms
of interaction assessment, such as ecological momentary assess-
ment (EMA), to collect patient interaction data in real-time. Here
we describe a pilot study utilizing such an EMA system with SARs.
We describe the development of the EMA framework, theoretical
design issues, and lessons learned. Preliminary machine learning
results indicate 75-80% accuracy for detecting specific interaction
modalities. We also discuss the potential utility of EMA for ex-
ploring cross-cultural differences with in-the-wild robot use, and
as a tool to support participatory design research on robotics in
healthcare settings.
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1 INTRODUCTION
1.1 Background
Socially-Assistive Robots (SARs) hold great potential to revolution-
ize the way we manage chronic illness outside clinical settings, both
as a social support tool and as a novel form of remote monitoring
via robotic sensors [1-4]. However, one of the major challenges
with deploying SARs and making use of the collected sensor data is
having “ground truth” labels so that machine learning algorithms
can be developed to classify multi-modal sensor patterns into dis-
cernible activities. This is a similar challenge seen with mobile
phone activity detection [5, 6]. With SARs this challenge is two-
fold: we both want to understand the humans’ behavioral patterns,
as well as use the sensor data to create more adaptive interactive
behavior in our social robots. To do so, however, requires us to
establish “ground truth” for what behaviors are occurring when
robots interact with people in-the-wild. This is both a technological
as well as design problem.

Until now, most SARs research outside lab settings has been
conducted using traditional recall-based methods to collect data
post-hoc (after the interaction), e.g. diaries, phone calls, and other
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data-collection instruments at the end of each day/week [1, 2, 4, 7].
While these capture the general gist of interaction, they lack the fine-
grained temporal detail of when specific activities occur throughout
the day, and the critical sequential nature of human interactions
[8]. Events do not occur “randomly”, but rather most events are
situatedwithin specific scenarios. As such, we need away to capture
this information, tie it to the robotic sensor data, and link that
back to patient health outcomes. Here, we propose an approach
to address this problem with SARs using ecological momentary
assessment (EMA), which attempts to reveal how people interact
with such technology in the real world in real-time, to gain a better
understanding of the behaviors elicited in humans [9, 10].

The paper is laid out as follows. In Section 1, we provide a general
argument for why EMA should be used with SARs. In Section 2,
we describe our current ongoing research and technical framework
design for how EMA can be used with SARs. In Section 3, we present
some of our results so far, including preliminary machine learning
analyses and lessons learned during deployment. Finally in Sections
4 and 5, we discuss our conclusions, as well as the broader cross-
cultural issues that may impact the use of EMA to design interactive
behavior for social robots.

1.2 EMA and Social Robot Design
Previous participatory design studies have suggested that robots
as artificial agents need to be designed not only from a physical
standpoint, but also as artifacts geared towards specific situated
contexts and uses, in order to elicit a more social stance amongst the
users [2, 11]. Interestingly, recent research on fMRI neural activity
during social interaction between human-human versus human-
agent (conversational digital avatar) found significant differences
in several parts of the brain, including areas that are hypothesized
to associate with the difference between a more social intentional
stance versus a more mechanistic design stance [12]. However, it
is an open question as to how exactly a robot’s behavior should
change autonomously in order to produce this effect in humans
during social interaction.

The use of EMA as a novel form of psychological assessment
during real-time social interaction opens up intriguing possibilities
for attempting to uncover how agent behavior influences social
cognition during human-agent interaction in more naturalistic set-
tings [13]. This is particularly true if the EMA is combined with
other devices, such as a wearables and smartphones [14]. Further-
more, EMA helps to characterize variations in behaviors within a
participant over time [15]. From a design standpoint, successful
human-robot interaction (HRI) in the wild requires a social fluidity
that can adapt to both intra- and inter- person variation, and the
harmonization of behaviors between humans and evocative objects
in their environment [16, 17]. EMA can help us unravel this com-
plex set of dynamics to create better interaction models for SARs
in various healthcare settings, both clinical and community-based.

1.3 Use of SARs for Healthcare
Within the context of healthcare, EMA has been shown to be a pow-
erful tool for monitoring everyday patient behaviors [9, 10]. One
challenge with many artificial intelligence approaches in healthcare
has been their reliance on clinical data, which is limited to times

when the patient visits a clinic or doctor’s office [18, 19]. SARs,
on the other hand, are often used outside those specific care set-
tings, such as in patients’ homes where they can collect data on
everyday patient routines and health status. This has wide potential
applicability to chronic illnesses, aging-related issues, and other
pressing healthcare issues. For instance, the growing older adult
population along with longer life expectancies in many countries
presents a challenge as how to best take care of older adults in their
own homes and communities, without resorting to costly institu-
tionalized care (e.g. assisted living, nursing homes) [20]. Moreover,
new health care issues are emerging out of the COVID-19 shelter-
in-place situation with the older adult population. Regardless if the
older adult was living independently at home or a retirement com-
munity, recent research has shown this population is experiencing
lower levels of quality of life encompassing a decreased social life,
less in-person social interactions, lower levels of physical activ-
ity, and an increased risk of depression post-pandemic [21]. More
broadly, prior research has demonstrated the impact SARs can have
on addressing clinical outcomes in a wide array of populations,
such as managing symptoms associated with mental illness and
promoting an overall higher quality of life [4, 22, 23]. As health
care has shifted from in-person to telehealth platforms, creative
interventions that can be adapted to the home environment have
become more relevant and critical in managing health [24]. Moving
forward, the challenge lies in how to better extend these findings
beyond research settings.

2 TECHNICAL FRAMEWORK FOR USE OF
EMAWITH SOCIAL ROBOTS

2.1 Theoretical Design Considerations
As mentioned in Section 1, the biggest advantage of the EMA ap-
proach is to reduce the recall bias effect in understanding real-world
interactions with healthcare AI technology. However, the challenge
is designing an EMA framework that collects relevant information
at appropriate times. From a theoretical standpoint, this requires
careful consideration of both sampling strategies and stimulus de-
sign.

The two most prominent methods for EMA sampling are “event-
based” and “time-based” [15]. Event-based focuses on specific mo-
ments in a participant’s day without capturing the entire experience
during the data collection period. It can be either reactive (based on
a sensed event in the environment) or trigger-based (prompted pur-
posely by the researchers). For example, behaviors can be recorded
by triggering participants to interact with SAR at random inter-
vals and reminding them to complete an event-based survey at
the end of the interaction. Conversely, the time-based sampling
approach is dependent on random surveys during set time windows
(e.g. morning, afternoon), without interaction prompts [25]. The
inquiries about the performed behavior, as well as the frequency of
interactions, provide data about ongoing, organic SAR interactions.
There are trade-offs with any of these sampling strategies: event-
based provides richer interaction data via prompts but misses out
on smaller, less-defined interactions, whereas time-based provides
more organic interaction data but can often result in more “sparse”
datasets because the surveys arrive at times when no interaction is
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occurring. There is also debate around the appropriate frequency
of EMA prompts, from just a few times a day to over 20 times [15].

Stimulus design (i.e. prompt content) in terms of SARs must
be rooted in two concerns: 1) the interactions we expect to oc-
cur, and 2) the sensor-based activities capable of being detected
[26, 27]. Poorly designed stimuli can omit critical features of the
interaction, and/or potentially bias the results towards researchers’
a priori preconceptions. To avoid these issues requires a grounded
approach to stimulus design, typically rooted in prior research to
establish a data-driven analytical framework [28]. In our case, we
divided our EMA stimulus for SARs into two primary components:
modality (the type of behavior) and proximity (whether the inter-
action occurred near/far to the robot), based on our prior research
using SARS with elderly patients with Major Depressive disorder
[1-3, 29, 30]. The modalities included both active interactions (e.g.
petting, talking, playing) and passive interactions (e.g. watching
television, eating together with the robot). Furthermore, beyond
the interaction-focused stimulus questions above, we incorporated
additional psychological assessment questions to gauge user per-
ception and emotional response post-interaction. The stimuli were
further divided into baseline, intervention, post-intervention phases
(see Section 2.2).

2.2 EMA Protocol Design
Designing the EMA protocol was influenced by the aims of the
study, which are as follows:

• To use EMA to distinguish specific kinds of human-robot
interaction, rather than just general “interaction”

• To evaluate the effectiveness of an EMA data gathering pro-
cedure in establishing health-related daily activity routines,
as well as emotional and behavioral changes within partici-
pants using SAR

• To establish which EMA sampling strategy (e.g. time-based,
event-based) provides the most accurate data for modeling
robotic sensor data against

• To evaluate how EMA sampling strategy and stimulus design
influence participants’ data collection compliance (response
rate) during health-focused HRI interventions

To achieve the aforementioned aims we tested various mo-
bile software and text-messaging systems that offer EMA ser-
vices (full list omitted here for brevity). After that evaluation, the
research team decided to utilize the EMA PilR platform (https:
//pilrhealth.com/., which provides a customizable mobile app avail-
able for both Android and iOS. The app can be used to send out
a signal “ping” to the participants to collect baseline information,
complete scheduled assessments, and prompt interaction triggers.
The platform was configured to test our hypotheses around stimu-
lus design and sampling strategies, as mentioned in the aims above.
Before deploying SARs (in this case the Hasbro Joy-For-All robotic
therapy pet, https://joyforall.com/) (Figure 1), detailed instructions
were sent to the participants regarding the use of the PiLR EMA
app and the nature of the study, as well as an 18-question base-
line survey which established current daily habits and behavioral
routines of the participant. A similar post-intervention survey was
administered after the main intervention phase, to gauge behavioral

changes and user perceptions of the SAR+EMA intervention. Dur-
ing the intervention phase, survey questions consisted of inquiries
that assessed interaction status between the participant and the
SAR (modality, proximity), as described below. Full questionnaires
for all phases, referred to as the Social Robot EMA (SoREMA) sur-
vey, are available online (http://www.caseybennett.com/uploads/
SoREMA_Survey_Questionnaire.docx..

In terms of intervention study design, both time-based and event-
based sampling strategies were scheduled at different periods of the
intervention for each participant (within-subjects design), incorpo-
rating both random sampling multiple times per day within specific
time interval windows (morning, afternoon, night) for the former
as well as event triggers for the latter. The participants received
time-based survey prompts (7-question) throughout the course of
one week to assess their interactions with the SAR during the prior
15 minutes. After this, the same routine would be repeated with
event-based (trigger) sampling strategy for the second week. Dur-
ing these two weeks of gathering interaction data via the PiLR EMA
app, a robotic sensor collar was simultaneously in-use onboard the
SAR (Figure 1). The collar, which was developed at Indiana Univer-
sity’s R-house robotics lab, was equipped with sensors to collect
information about sound, ambient light, and motion of the robot
(via a 3D accelerometer). This information can be used to detect
interaction patterns between the robot and subject [1-2]. The data
was collected continuously, roughly once per second. The eventual
aim is to match the sensor data to the EMA data, to see if interaction
patterns align between the two.

2.3 Data Analysis & Modeling
An initial evaluation of this system described in Section 2.2 was
conducted in Fall/Winter 2020 with 4 participants from the US
Midwest. The participants were drawn from the general population
and living alone. Data collected was parsed into an analysis dataset
to test the feasibility of machine learning (ML) using EMA data.
In this case, the EMA data became the "targets" while the sensor
data became the "features" for ML models. These EMA targets
were the modalities described in Section 2.1. For simplicity we
collapsed the dataset into a series of binary classification predictions
(e.g. petting vs. not petting) rather than attempt the more difficult
multi-class classification problem. Due to target class imbalance,
the data was re-balanced using SMOTE [31]. Additionally, some
modalities were rarely performed and thus were excluded from
further analysis, which left us with a sample of 80 interactions
across five modalities: petting, playing, moving the SAR (from one
location to another), talking to the SAR, watching TV/radio. Each
“interaction” represented a 15-minute time period (based on the
EMA protocol described in Section 2.2), so the 80 interactions
constituted 20 hours of total interaction data. The modalities
were not mutually exclusive, so for instance a participant could be
petting the SAR while talking to it. Indeed, participants reported
slightly over 2 modality types per interaction. We expected that
the pattern signatures in the data for both modalities would be
present in that case, and with appropriate modeling techniques be
detectable.

Modeling was performed using the python package Keras (https:
//keras.io/., which is a deep learning library based on TensorFlow.
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Figure 1: (a) Joy For All robot wearing a sensor collar; (b) view of sensors inside the collar

For predicting the EMA target, the feature data for that 15-minute
time period was sliced into 15-second-long overlapping windows,
with 50% overlap (similar to [5]). The resulting data was then fed
into a deep learning model consisting of a single 2D convolutional
neural network layer (CNN) with kernel size set to 1 and using
a ReLU activation function, followed by a single recurrent layer
(LSTM) with 50 units [32]. The idea was that the CNN could parse
out "invariant representations" of pattern signatures occurring any-
where in the interaction, followed by the LSTM detecting critical "se-
quences" of those patterns over time. A final fully connected "Dense"
layer using a sigmoidal activation function was used to make the
final binary classification predictions. To evaluate performance, 20%
of the data was held out as a "test set" for each classification run. Fea-
ture selection to identify was performed to identify which features
were important for predicting specific modalities, using wrapper-
based methods in Scikit-learn [33]. Those features included motion
in the x/y/z directions, rotational motion (arc), light/sound values,
orientation, and transitions between sound/orientation categories
(e.g. loud to quiet, portrait to landscape).

3 RESULTS
3.1 Design Lessons Learned
The study described here is still ongoing, but there have been some
important early lessons learned, which we believe may be useful
for the human-computer interaction (HCI) and HRI communities in
attempting to use EMA to assess social robot deployments in real-
world settings. These fall into two broad categories: EMA design
recommendations and platform hardware recommendations.

In terms of EMA design, feedback from participants revealed
several things. First, the baseline survey was critical for establish-
ing target time intervals for intervention pings, which were both
appropriate for the participant to receive notifications (pinging
them when sleeping is not useful, for instance) and most probable
time periods when participants were willing to engage the SAR
(different individuals have different schedules and “unstructured
leisure times”). Without setting such parameters, EMA data will

likely be much too sparse to allow for robust modeling or analysis.
Secondly, ping frequency needs to achieve a delicate balance be-
tween capturing relevant interactions and being “annoying” to the
user. It appears better to allow a missed interaction to occur, than
including “reminder prompts”, particularly when already pinging
participants 5+ times per day. All participants except one reported
a sense of alert fatigue with frequent reminder prompts, similar to
that observed in clinicians and patients in other settings [34, 35]. All
participants also expressed a desire for incentives, such as badges
for completion or leaderboards to compare their own interaction
patterns to others’ robot use.

On the hardware front, we encountered challenges with time
synchronization between the various devices, which is of course a
known issue in the sensor fusion and internet-of-things communi-
ties [36, 37]. We found it useful to run separate internal clocks on
each device, keeping logs of the exact activation time, then cross-
walking between unix time-stamps. In situationswhere internet/Wi-
Fi fails for instance, this can serve as a useful fall-back for auto-
mated time synchronization. In real-world healthcare applications,
especially in populations such as rural older adults where internet
connectivity is limited, this is an important system design consid-
eration.

Another noteworthy phenomenon reported by participants dur-
ing the research was the possible emergence of Hawthorne effect
[38]. During interviews conducted in the post-intervention phase,
several participants (3 out of 4) reported that they felt like they
were starting to specifically perform behaviors with the SAR cor-
responding to the modalities being presented as a multiple-choice
list during EMA prompts, even though they were given the option
to add behaviors that were not in the list. As such, we analyzed the
data looking for this, but only found possible evidence for it in one
participant (i.e. 25% of the time). Nevertheless, it is interesting that
the Hawthorne Effect is being reported by some participants, and it
remains something researchers in this domain should be aware of
in the future. The Hawthorne effect has been well-researched and
may affect research participation through participants’ increased
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Table 1: Machine Learning Classification Results

Modality Accuracy AUC
Playing 86.2 0.9285
Talking 68.4 0.7638
Petting 75.6 0.7234
Listening TV/Radio 74.8 0.7781
Moving It 66.0 0.6938
Average 75.3 0.7752

awareness of being studied. In addition, feelings of wanting to con-
form to expectations and social desirability could also induce a
behavior change within the participant [39]. According to McCam-
bridge et al. (2014), the Hawthorne effect can affect participants’
behavior but the mechanisms of emergence of this phenomenon
and its magnitude are still unclear [38].

3.2 Data Analysis Results
The results of machine learning analysis described in Section 2.3 are
shown in Table 1, based on performance on the test set. The main
aim was to test the feasibility of this EMA approach, in particular
the ability to use robotic sensor data for activity recognition of
human-robot interactions based on EMA in real-world settings.

As can be seen in the table, the overall average performance
across all modalities is approximately 75% accuracy, with an AUC
(area-under-curve) of .7705. The performance is variable, however,
with the active interaction modalities (Playing/Petting) appearing
to have better performance than the other modalities. Moreover, a
more detailed feature selection analysis indicated that specific sen-
sors may be related to the pattern signatures of specific modalities,
enabling the predictability. For instance, petting the robot seemed
more dependent on orientation and motion features, while playing
depended more on sound and motion features, TV/radio depended
on orientation and sound, and talking depended on sound and
motion. Rotational motion (arc) was also present for playing and
talking, but not the other modalities. In other words, light/sound
sensor data may be more important for detecting some modali-
ties, while motion data and orientation may be more important for
others.

Obviously, given the limited sample size in the pilot study (only
4 participants), these results should be taken with caution. They are
suggestive of potential, but not sufficient to draw any firm conclu-
sions yet. The high degree of variability across modalities, as well
as discrepancies between accuracy and AUC values, indicates addi-
tional data collection is needed, particularly in cases like this where
a large amount of class imbalance is to be expected, which would
allow for a broader array of re-balancing techniques to be explored
(e.g. under-sampling, hybrid methods). Larger sample sizes may
also enable exploration of simultaneous multi-class classification,
averse to the simpler binary classification here (see Section 2.3). In
short, the results here point to a number of potential future research
avenues related to modeling of EMA/sensor data with SARs.

4 DISCUSSION
4.1 Implications
Our preliminary results in Section 3 suggest the potential for EMA
in social robotics and understanding real-world human-agent inter-
actions, as well as a number of implications for the future related
to current HRI challenges and health care practices. For instance,
one of the challenges in social robot design is that robot use by
humans is grounded in the situational context, which is heavily
influenced by cultural factors [40]. Culture shapes not only the
practice of technology, but also human cognition during interaction.
The interplay between the two is not static, but emergent. As such,
robotic technologies should not only identify and mimic cultural
forms, but also be culturally robust and adaptive to the dynamic,
situated performance of human culture [41].

Broader HCI research has identified differences in many forms
of technology use, including robots, but also pointed out that such
distinctions tend to suffer from over-simplification [42, 43]. SARs,
in that regard, can be conceptualized as “companion objects” or
“evocative objects” that alter our perceptions of self, our environ-
ment, and the socio-technical systems we inhabit [44, 45]. These
effects operate on multiple levels and dimensions. Examples include
high-context vs. low-context cultures, communal vs. individualistic
cultures, Confucian power hierarchies vs. Western power hierar-
chies, and so forth . . . all of which impact societal structure down
to individual behavior [40, 46]. Beyond simply categorizing these
differences, the challenge is how we can capture the impact of
these factors on situated robot use. For instance, prior research sug-
gests participants in South Korea envision robots as companions
for the family, while US participants see home robots as individ-
ual assistants and modern appliances [40]. Cultural differences in
participants perceptions of robots may lead to differential thera-
peutic effects, particularly for those conditions that impact quality
of life and addressed through social interaction, such as depression,
loneliness, and dementia.

4.2 Participatory Design Approaches
The challenge mentioned above suggests that there may be a role
for EMA to play in the cross-cultural study and design of robotics,
as a method for understanding nuances of how robots are adapted
to culturally-specific uses in real time, outside the purview of static
post-hoc questionnaires or other forms of analysis. Combined with
participatory-design (PD) approaches to social robotics [11, 47],
this may enable us to create more adaptive forms of behavior tuned
to latent cultural attributes that are apparent in subtle differences
in the temporal dynamics of robot use by engaging users in EMA-
based data-driven discussions during the PD process.

EMA could also serve as a form of feedback to help users un-
derstand their own robot-use patterns outside of PD workshops
in order to stimulate ideas during later workshops. Interestingly,
all of the participants in our pilot study expressed a desire during
post-intervention interviews for that sort of feedback, as well as
possible comparisons to other users (e.g. “leaderboard” or “social
feed” that reports who else in their social network is currently inter-
acting with their SAR and how), in order to contextualize their own
robot use. Such an approach may help address some of the known
challenges with PD research, such as maintaining focus during
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the design process and envisioning abstract forms of interaction
beyond the participant’s immediate personal experience [48]. This
may be particularly true during longer-term PD research studies in
the field.

5 CONCLUSION
Understanding what people “really do” with robots is a key first step
in designing better robot behavior. This paper describes the use of
EMA as a novel form of real-time interaction assessment with SARs
in-the-wild for healthcare purposes. Such real-time assessment is
critical for enabling better interactive behavior in social robots
and other forms of AI, as well as serving as the basis for machine
learning models using robotic sensor data to track in-home patient
status. Here, we detail a pilot study utilizing such an EMA system
with SARs, including the development of the EMA framework and
theoretical design issues. There were a number of lessons learned
which may be valuable for the HRI/HCI communities, as well as
preliminary results showing 75-80% accuracy for detecting specific
interaction modalities. More broadly, we contend that EMA holds
potential utility for exploring cross-cultural differences with in-
the-wild robot use, and as a tool to support participatory design
research on robotics in healthcare settings.
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