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Abstract 

Temporal modeling holds great promise for healthcare, 

where treatment decisions must be made over time, and 

where continually re-evaluating ongoing treatment is 

critical to optimizing clinical care for individual patients.  

Tremendous advances have been made in data mining and 

temporal modeling of healthcare data, but practical 

challenges exist in moving these advances from the 

laboratory/theoretical setting to applied settings with real 

patients.  In this paper, we address a number of these 

challenges.  First, we provide empirical evidence for 

calculating the optimal trade-off between costs and 

outcomes in temporal modeling, suggesting that it may be 

a dynamical system of relative values of costs and effects 

between treatment actions (rather than absolute values).  

Such an approach may allow optimal reward functions to 

be derived from clinical data.   Second, we evaluate the 

effects of finite horizon levels on both cost effectiveness 

and outcome change.  Finally, we provide a proof-of-

concept application for integrating machine-learning-

classifier-based (ML) transition models into temporal 

models (e.g. Markov Decision Processes).  The results 

showed that even a relatively poor classifier can produce 

small gains in performance and highlights the potential of 

such an approach for further exploration.   Individualized 

transition models via such ML integration provide a 

potential practical avenue for implementation of 

personalized medicine approaches in EHRs and real-

world clinical practice.  We also discuss a number of 

future directions for research, such as inclusion of patient 

safety and treatment non-adherence, and temporal 

modeling of the clinical process as a basis for cognitive 

computing. 
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Markov Decision Process; Medical Decision Making; 

Reinforcement Learning 

1. Background and Motivation 
1.1 Background 

 Previous research has shown the potential for 
using temporal modeling, such as reinforcement learning 
approaches, as a tool for understanding patterns of clinical 
change in patients over time in the healthcare domain [1-
3].  Such modeling can facilitate treatment planning and 
enhance clinical decision making, e.g. functioning as a key 
component of dynamic treatment regimes [4].  This has 
potential implications for providing more sophisticated 
clinical decision support tools, both to patients and 
providers [5].  From an artificial intelligence (AI) 
perspective, such temporal modeling holds promise to 
better support human decision-making processes as a sort 
of cognitive scaffolding (see Discussion). 
 One common approach to conceptualizing such 
temporal, dynamic models is Markov Decision Processes 
(MDPs), as well as their partially observable cousins 
POMDPs [6,7].  These models allow one to reason 
efficiently about actions/decisions over time, taking into 
account the probabilistic nature of action effects, 
outcomes, and other unforeseen events.  A number of 
methods also exist to find optimal solutions (i.e. decisions) 
in these models: Q-learning, temporal-differencing (TD), 
SARSA, Dynamic Decision Networks/Dynamic Bayesian 
Networks (DDNs/DBNs) [8].  These solution methods 
vary in different ways, but all essentially boil down to 
estimating/learning the cumulative effects of particular 
action sequences over time.  In other words, if an agent 
makes a series of decisions (and/or performs the associated 
actions), what will be the resulting outcome, 
probabilistically speaking.  Such decision-making can also 
be performed online, so that the agent is constantly re-
evaluating its predictions/choices as new information is 
received [9]. 
 Critically, such temporal modeling can build on 
existing single decision time-point models, such as a 
neural network or support-vector machine trained to 
classify, say, a group of patients into “likely to respond to 
treatment X” and “likely to respond to treatment Y”.  In 
that sense, temporal modeling using reinforcement 
learning or MDPs can be seen as a natural extension to the 
tremendous advances in data mining over the last twenty 
years, as well as machine learning methods in their own 
right. 

 In previous work, we have shown that temporal 
modeling combining POMDPs and DDNs (using real 
patient data) can out-perform current treatment-as-usual 
case-rate/fee-for-service models of healthcare [10].  
However, a number of practical challenges remain for 
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moving these advances into real-world clinical 
applications. 
 

1.2 Current Work 
 In this paper, we focus on addressing some of the 
practical issues that arise when moving these artificial 
intelligence methods from the research setting to real-
world clinical environments.  For instance, all 
MDP/POMDP and DDN methods have by definition some 
sort of reward function as well as a cost/utility function 
(see Section 2.1).  In a research setting, these are typically 
set to contrived values for outcome states.  For example, if 
moving a robot on a discrete grid around a laboratory, 
some “goal” state can be set to +100, and every non-goal 
state can be set to -1.  Thus the robot receives a reward of 
+100 for reaching the goal, and incurs “costs” of -1 for 
every action that it takes till reaching the goal.  This allows 
the robot to learn efficient behaviors that optimize rewards 
versus costs, although there can be challenges in designing 
a good reward function [11].  However, in healthcare, it is 
an even more delicate balance between treatment costs and 
treatment outcomes (i.e. rewards).  Is a treatment that 
produces twice the outcome improvement (on some 
standardized outcome scale) worth ten times the cost of an 
alternative treatment?  What about a treatment that 
produces better outcomes but takes twice as long to do so 
(ergo, potentially exposing the patient to greater risks or 
side effects)? As a practical matter, we need methods that 
allow us to consistently calculate the trade-offs between 
the costs and rewards in clinical settings and to determine 
optimal solutions for treatment planning.  Moreover, given 
the number of disorders in existence, such methods need to 
be adaptable across clinical domains (i.e. non-disease-
specific).  Elsewhere, Lizotte et al. provide a theoretical 
approach to this problem [12]; here we come at it from an 
empirical direction. 

When temporal modeling is applied to healthcare, 
contrived values are often used either in whole or part for 
rewards/costs [13].  While such approaches can provide 
useful information about the application of reinforcement 
learning or machine learning techniques to healthcare in a 
general sense, they do make it challenging to create 
practical applications in real clinical domains from such 
techniques.   

Other practical issues concern how to incorporate 
long-term change vs. short-term change (e.g. a patient 
having a sudden upswing), treatment non-adherence, 
patient safety or risk, and multivariate models of patient 
outcomes while retaining the tractability of the model. 

Here, we address several of these many practical 
issues - deriving optimal reward functions from clinical 
data, evaluating horizon effects, and integration of 
personalized transition models via machine learning 
classifiers – via building simulations based on actual 
patient data from a real-world electronic health record 
(EHR).  The goal is to elucidate potential approaches for 
overcoming these issues in an applied setting, as well as 
how they may support cognitive tasks in clinical decision-
making. 

 

2. Methods 
 In this section, we first describe the model and/or 
algorithms used.  We then describe an application, 
including the data and simulations used, designed to 
provide empirical evidence towards the three practical 
issues of concern 
 

2.1 Model/Algorithms 
We have previously described the POMDP and DDN 
algorithms in detail we use in this work [10], and for 
brevity provide only a brief description here.  Plentiful 
descriptions of MDPs and POMDPs can also be found in 
the literature [2,6,7-9].   In short, any MDP is generally 
a tuple containing States (s), Actions (a), Observations (o), 
Rewards (r), and Costs (c).  The model occurs over some 
discrete time-steps (t), which in healthcare typically are 
patient visits.  A transition model (TR) encodes the 
probabilistic effects of various treatment actions, P(st+1 | st, 
at), i.e. given an action and current state the probability of 
ending up in some future state (also see Equation 1 in 
[10]).  The transition model serves as the basis for 
decision-making, allowing an agent to estimate future 
rewards and costs for sequences of decisions.  We 
additionally have some probabilistic relationship between 
observations and the actual underlying state (which is 
unobservable).  This is referred to as a belief state.  In 
many domains, since we cannot directly observe the 
underlying state, we must reason in the realm of belief 
states.  This is often true in healthcare, since we typically 
do not directly observe a patient’s disease (e.g. diabetes) 
but rather infer it from their symptoms (e.g. blood glucose 
readings).  Furthermore, in a POMDP model, observations 
may sometimes be missing or noisy, meaning that the 
current belief state must be inferred from previous belief 
states.   Reasoning over beliefs also provides similarities to 
human cognition, which must address the same challenges 
[14].  A basic example of a POMDP/DDN is shown in 
Figure 1, where CPUC=Rewards (r). 
 

 
Figure 1: Example of a POMDP/DDN for clinical decision-
making (from [10]) 

  
 Rewards are calculated as Cost-per-Unit-Change 
(CPUC), which has been previously described [10, 15].  It 
is basically a measure of cost-effectiveness of a given 
treatment/action, calculated as a ratio of outcomes and 



costs.  It provides a unit-scaled measure of rewards, and 
could be calculated with any outcome measure or any 
disease.   Here, we use a functioning outcome (CDOI-
ORS, see Section 2.1 in [10] for description) applicable to 
patients with co-occurring chronic mental and physical 
illness, as our dataset contains.    This outcome tracks a 
patient’s improvement/deterioration in functioning in daily 
life, a critical aspect in treatment of chronic illness where a 
“cure” is often not available. 

It should be noted that the transition model has a 
direct correlation to the probabilistic output of many single 
decision time-point models in typical data mining 
applications.  For instance, a neural network can output the 
probabilities of a number of possible outcomes for a 
number of possible input actions, which is in effect a 
transition model for a given point in time.  In fact, by 
synthesizing alternate input for individual patients into a 
learned classifier, nearly any data mining model can 
produce such transition models for reinforcement learning.  
This could be used in tandem with something like Q-
learning during its early stages of training, or as an 
alternative approach.  The advantage is that the state-space 
can be reduced since classification over relevant variables 
(e.g. patient age, gender, diagnosis, outcome delta, etc.) 
can be dealt with outside the temporal model.  Only 
variables that change rapidly over patent-visit time-scales 
(e.g. weeks, months) need be considered in the temporal 
model (e.g. gender typically would not change).  We show 
an example application of this approach (Section 3.4).  In 
another sense, this segregation can be thought of the 
separation of invariant and variant features in perception 
(e.g. vision in a Gibson-ian sense).  We return to this 
notion in our discussion of cognitive computing in Section 
4.1. 

A final note is that the framework is configured 
to run as a multi-agent system (MAS), so that each 
physician and patient can be thought of as interacting 
agents within the model.  An example of this can be seen 
in Figure 2 (see also Sections 1.5 and 2.2 in [10]). 
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Figure 2: Types of agents are shown in double-line borders.  
Other boxes represent various aspects of the model.  The 
general flow is: 1) create patient-specific MDPs/physician 
agent filters evidence into existing beliefs, 2) recurse through 
MDP search tree to determine optimal action, and 3) perform 
treatment action and update belief states.  From [10]. 
 

2.2 Application 

 Averse to our previous work [10] where we used 
real patient data completely (real outcomes, actual 
treatments, etc.), here we take a simulation-based 
approach.  The reason for this is that we wish to be able to 
compare across a range of scenarios unconstrained by the 
data [3], e.g. treatments having stronger/weaker effects, 
patients receiving different combinations of treatments, 
alteration of patient characteristics such as treatment 
adherence likelihood, etc.  This allows us to freely 
manipulate parameters in the model and perform 
something akin to sensitivity analysis.  However, it should 
be noted that, unless otherwise stated, data input into the 
model was actual data derived from actual EHR patient 
data. 

 Data was derived from clinical data from the 
EHR at Centerstone, a large, clinic-based behavioral and 
primary-care healthcare provider.  Variables extracted 
were the same as described in [10]; however, we used an 
updated set of patient data containing 9,735 patients seen 
between 2010 and early 2013.  This resulted in some slight 
changes to average costs or outcomes, though the relative 
patterns are the same.  Similar to the previous study, the 
utilized patients’ primary diagnosis was clinical depression 
with a majority exhibiting co-occurring physical illness, 
including hypertension, diabetes, chronic pain, and 
cardiovascular disease.  The sample is typical of 
Medicaid/Medicare populations in the United States, 
largely comprised of patients with multiple, co-occurring 
chronic physical and mental illnesses [16,17]. 

Treatments were classified into three categories at 
a gross-level as Psychotherapy, Medication, and combined 
Therapy/Meds.  Actions were similarly grouped into these 
three actions, henceforth labeled as Therapy, Meds, and 
Therapy+Meds, along with the option to Not Treat (i.e. 
end treatment or move to maintenance treatment, for the 
patient at that timepoint).  There were thus four possible 
treatment actions (including not treating) to choose from at 
each timepoint.  The ability exists to replicate this 
approach for, say, specific medications or for the inclusion 
of augmenting services such as case-management/care-
coordination, though we leave that for future 
consideration.   We focus here on the feasibility using the 
base services, at a relatively high level of abstraction. 

Similar to the previous study, five states were 
calculated from outcome deltas (change in outcome from 
baseline, t=0, to current timepoint, t).  These states were 
based on clinically validated thresholds [10, 18].  
Critically, the use of outcome deltas, averse to clinical 
outcomes themselves, provides a convenient history meta-
variable for maintaining the central Markov assumption: 
that the state at time t depends only on the information at 
time t−1 [19].  As noted in Section 2.1, reasoning is done 
over belief states, rather than deterministic states. 

Treatment decisions were considered over the 
course of eight sessions, T = 8 treatments (based on the 
typical average number of sessions amongst Centerstone’s 
outpatient population).  The AI physician agent must make 
a treatment decision for each patient at each timepoint over 
the course of seven sessions (plus baseline/intake, max 



total sessions = 8).  The transition model for such decision-
making was treated as stationary, finite-horizon, and 
undiscounted. 

Patient treatments and outcomes were simulated 
by taking a test set of 500 patients (sampled randomly 
from the total dataset), and starting with their actual patient 
data/characteristics at baseline (e.g. their baseline outcome 
score).  Then, depending on the treatment action chosen by 
the AI model at each timepoint, the patient’s next outcome 
was sampled from a Gaussian distribution using the 
~9,000 other patients not included in the test dataset.  The 
Gaussian distribution used for a given timepoint varied 
based on both the treatment chosen as well as the patient’s 
outcome delta state at the given timepoint (see above).  
Thus, the process is similar to slicing from a histogram in 
particle filtering, given some history of change.  The 
outcomes were probabilistically “hidden” from the 
visibility of the AI, to create a partially observable 
environment where clinical observations are sometimes 
missing or unavailable.  In all results presented here, that 
was set to 30% of the time (the same observed in the real 
dataset). 

All other probabilities and parameters for 
modeling were estimated directly from historical EHR 
data, as we have done previously [10].  That included the 
average cost per service, expected values of outcome 
improvement and deterioration, and transition model 
probabilities for each type of treatment.  It would also be 
possible to add a further learning element – for instance by 
updating the initial transition model probabilities 
calculated from historical EHR data using something like 
temporal differencing, (see Section 4.2), though we have 
not done so here 

A couple things are important to make clear here.  
First, the information made available to the “AI doctor” at 
a given timepoint was only the same information that 
would be available to a human doctor at that time (e.g. 
patient characteristics/diagnosis, patient history, available 
current observations).  Second, the simulation of each next 
outcome for a given patient occurred only after the 
action/treatment was decided for the current timepoint.  In 
other words, the AI doctor was not allowed to peek at 
future information, nor did such information even exist at 
the time of decision-making. 

Obviously, a critical first step is showing that this 
simulation approach produces similar patient outcome and 
treatment cost values as the original model based entirely 
on real patient data.  We do this in Section 3.1. 

 
2.3 Simulation Experiments 

 We performed several experiments using the 
application described in Section 2.2.  All experiments were 
performed over 10 replications, and all values reported 
here are averages over trials.  The AI framework 
(including the MDP) is written in Python 2.7 
(www.python.org).  The code is parallelized using the 
multiprocessing package, so that multiple patients are run 
at once.  In theory, the speed is thus only constrained by 

the number of processors available.  An evaluation of 
ground truth for the simulation-based approach is provided 
in Section 3.1 

First, we evaluated the trade-off between costs and 
outcomes (Section 3.2).  Costs were derived from CPUC, 
which is in effect a measure of cost-effectiveness rather 
than raw costs.  This is essential to creating models that 
are non-disease specific, because scaling costs relative to 
their cost-effectiveness allows us to compare across 
clinical domains.  We also note that we are only 
considering short-term, immediate treatment costs here. 

The trade-off between costs and outcomes was 
adjusted using the outcome scaling factor (OSF), which 
was previously described (see Section 2.6 and equation 7 
in [10]).  In short, the significance of the outcomes was 
varied via the OSF that adds in scaled outcome values {0-
1} as an additional component of the utility metric.  The 
outcomes (current delta) are scaled and flipped based on 
the maximum possible delta for a patient at a given 
timepoint (deltamax), so that higher values (near 1) are 
worse than lower values (given that we are attempting to 
minimize CPUC): 

 

  (1)  

 
Where delta refers to outcome delta.  Averse to 

previous work, we have altered equation 7 from [10] here 
so that OSF always ranges between 0-1.  The equations are 
mathematically equivalent, but having OSF scaled 0-1 
provides easier control.  When OSF is set to 0, outcomes 
are considered equally important as costs, because 
outcomes are already accounted for in the basic CPUC 
utility calculation, even when this factor is set to 0. When 
OSF is set to 1, however, only outcomes are considered.  
The case where only costs are considered is not evaluated, 
since it is a trivial case (if we are simply trying to 
minimize costs, at least in the short-term, we would not 
provide any treatment services at all).   

We also investigated the effects of different finite 
horizon levels (Section 3.3).  Previous research has 
indicated potential issues with “look-ahead pathologies” 
related to horizon levels and other aspects of MDP models 
that can contribute to accumulating prediction errors into 
the future [20].  However, too small of a horizon (at its 
most extreme a greedy one-step look-ahead function) does 
not always take full advantage of temporal knowledge.  
We have a limited horizon in this case since patients are 
only seen over a set number of clinical sessions (which 
limits potential gains), but an evaluation of horizon effects 
is still worthwhile. 

Finally, we evaluated a proof-of-concept for 
integrating machine learning (ML) classifiers into the 
temporal modeling application (Section 3.4).  This entailed 
making individualized transition models for use by the 
MDP (see Section 2.1) based on the output probabilities of 
the ML classifier for each individual patient at each 
timepoint.  For simplicity, we reduced the number of 
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patient states down to three from five (Deterioration, 
Flatline, Improvement) and used a single classification 
scheme with no tuning.  This was an ensemble classifier 
based on max-probability “voting by committee” [21] 
similar as to done with the CDOI previously in [22], using 
five underlying algorithms: Naïve Bayes, Multi-layer 
Perceptron neural network, Random Forests, K-nearest 
neighbors, and logistic regression.  The ML classifer was 
constructed using Knime 2.8 (www.knime.org).  No 
tuning of algorithm parameters was performed.   The same 
features were used as in [22], although that model was 
meant for only a binary prediction (deterioration vs. 
improvement).  Discretization of features was done using 
CAIM, a form of entropy-based discretization [23].  

The classifier was pre-trained on patients from 
the broader dataset not included in the test set (Section 2.2) 
in Knime.  The AI framework would then communicate 
with Knime via a backend data warehouse (Postgres 9, 
www.postgres.org) containing EHR data.  In short, 
individual patients at a given timepoint (and a given 
outcome delta) could be sent to the DW, have various 
clinical indicators tagged on, and then queried to the 
classifier in Knime.  Knime would apply the pre-trained 
classifier, then write the results back into the data 
warehouse, which could then be retrieved by the AI 
framework (i.e. physician agent).  

We emphasize here that the goal was not to build 
a highly polished classifier, but simply to provide a proof-
of-concept for the approach in a real-world application, 
using all the components that such applications typically 
contain. 

 
3. Empirical Evaluation 
3.1 Simulation Ground Truth 

A first step in any simulation-based approach is 
to compare the simulated model with real-world data in 
order to provide some ground truth.  Tables 1 and 2 
provide a comparison of patient outcome and treatment 
cost values between the original model based entirely on 
real patient data (taken from [10]) and the current 
simulated model (which are based on real patients but 
include simulated outcomes).  These tables show results 
for the Hard Stop (where the AI always decides to end 
treatment after the third visit), Raw Effect (where the AI 
always optimistically assumes patients will improve 
regardless of history), and the MDP models.  We thus have 
a lower threshold where cost containment is primary (Hard 
Stop), an upper threshold where patient outcomes are 
primary (Raw Effect), and a more balanced model 
considering both (MDP).  Details of these various models 
are provided in [10]. 
 

Table 1: Real Patient-Data Results (from [10]) 

Decision Model

Transition 

Model

Missing 

Obs CPUC

Avg Final 

Delta

Std Dev 

Final 

Delta

Avg # of 

Services

% Patients 

Max Dosage

Hard Stop N/A Yes 305.53 2.56 8.07 3.00 0%

Raw Effect 0th Order Yes 497.00 4.73 8.45 8.00 100%

MDP Global Yes 189.93 5.59 6.44 4.11 9%  
 

Table 2: Current Simulation Results 

Decision Model

Transition 

Model

Missing 

Obs CPUC

Avg Final 

Delta

Std Dev 

Final 

Delta

Avg # of 

Services

% Patients 

Max Dosage

Hard Stop N/A Yes 352.14 3.22 7.80 3.00 0%

Raw Effect 0th Order Yes 455.14 5.72 8.12 8.00 100%

MDP Global Yes 182.10 6.58 6.02 4.30 12%  
 
 We first note that the relative patterns across the 
models are consistent for both costs (as measured by 
CPUC) and outcomes (Average Final Delta), as well as the 
standard deviations in outcomes and max dosage (where 
max dosage equals the percentage of patients receiving 
treatment for all eight sessions).  The absolute values are 
also comparable, although outcomes (Average Final Delta) 
are higher due to the use of the updated patient dataset 
with higher outcomes (see Section 2.2).  In short, the 
simulation data closely approximates the patterns seen in 
models based entirely on real patient data. 
 

3.2 Cost/Outcome Trade-offs 
 Next we evaluated the trade-offs between 
treatment costs and patient outcomes using the OSF 
parameter (see Section 2.3).  This entailed varying the 
OSF between 0 (where cost effectiveness is emphasized) 
and 1 (where outcomes are emphasized).  The main results 
using real cost values that varied by treatment type ($80-
115 USD) can be seen in Figures 3 and 4. 
 

 
Figure 3: Average CPUC, actual costs 

 

 
Figure 4: Average Outcome Delta, actual costs 
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As can be seen in those figures, there appears to 
be an optimal point (minimal CPUC and maximal outcome 
delta) around 0.94 for the OSF value, using actual cost for 
each treatment action as calculated from the EHR.  Lower 
values of OSF result in lower outcomes and higher CPUC.  
Higher values of OSF also produce suboptimal results, in 
particular the over-emphasis on outcomes results in 
skyrocketing costs and CPUC.  The reduced optimality of 
higher OSF even for outcomes falls in line with the notion 
of “look-ahead pathologies” [20] and can reflect, for 
example, the problems of over-treatment.   Of note, setting 
OSF to 1 results in values of OSF similar to the Raw 
Effect model (see Table 2), where the physician agent 
always optimistically assuming more treatment produces 
better outcomes.  This is not entirely surprising, but does 
provide some internal validity for the results. 
 A primary question is whether the patterns seen 
in Figure 3 and 4 are simply artifacts related to the 
absolute cost and outcome values, or perhaps the ratio 
between them.  In order to test this, we ran further 
simulations where we varied only cost values, only 
outcome values, and both cost and outcome values 
simultaneously.  For example, we halved the cost value for 
each treatment - keeping the relative values between 
treatments the same – while holding outcome values 
constant.  The results can be seen in Figures 5 and 6. 
 

 
Figure 5: Average CPUC, costs halved 

 

 
Figure 6: Average Outcome Delta, costs halved 

 

 Halving the treatment cost (which also 
simultaneously changed the ratio between costs and 
outcome), had no effect on the optimal OSF value – it 
remained at approximately 0.94.  We performed other 
simulations where we doubled the costs, 
increased/decreased average outcome deltas, 
simultaneously altered both costs and outcomes, and 
altered the horizon level.  All of those gave the same result 
(data not shown for brevity).  In short, the optimal OSF 
value – and thus the optimal trade-off between costs and 
outcomes – is not a function of the absolute value of costs 
or outcomes, nor the ratio between the two. 
 A secondary question then is what other aspects 
might affect the optimal trade-off point.  We know from 
prior research that different datasets can produce different 
optimal OSF values (e.g. our previously published results 
had an optimal OSF of 3-4, which equates to around 0.7-
0.75 on a 0-1 scale, see [10]).  So the question is why?  
Previous research did not consider different treatment 
costs, i.e. the costs were the same for all actions.  We 
investigated this by running simulations on our current 
data where we artificially set all treatment actions to have 
the same costs (the overall average cost was maintained).  
Results can be seen in Figures 7 and 8. 
 

 
Figure 7: Average CPUC, equal costs for each treatment 

 

 
Figure 8: Average Outcome Delta, equal costs for each 

treatment 

 
 As can be seen, the optimal value for OSF is now 
distributed across a wide range.  There is no clear optimum 



at any value, let alone the 0.94 value we saw above.  
Again, nothing was changed except the treatment costs 
were artificially set to be the same.  Thus altering the 
relative cost between treatments did affect the optimal 
trade-off.  Preliminary results (data not shown for brevity) 
suggest the same is also true of relative values of treatment 
effects on outcomes, both for transition probabilities 
(probability of improvement/deterioration) and average 
effect amounts (average amount of 
improvement/deterioration).  In other words, it is the 
relative distribution/variation of these values between 
treatments that is key.  Moreover, we suspect there may be 
interactions between these components of the system. 
 In short, the optimal trade-off value between 
costs and outcomes in a reinforcement learning model in 
healthcare may be a function of a dynamical system of 
relative values of costs and effects between treatment 
actions (rather than absolute values).  It may be possible to 
calculate this function in a closed-form solution if enough 
is understood about the behavior of such systems. 
 

3.3 Horizon Effects 
 We also investigated the effects of different finite 
horizon levels (with an optimized OSF=0.94, see Section 
3.2).  The results are shown in Table 3. 
 

Table 3: Horizon Level Effects 

Decision 

Model

Transition 

Model

Missing 

Obs Horizon CPUC

Avg Final 

Delta

Std Dev 

Final 

Delta

Avg # of 

Services

% Patients 

Max Dosage

MDP Global Yes 1 189.08 6.01 6.10 3.98 8%

MDP Global Yes 2 188.91 6.28 6.11 4.21 11%

MDP Global Yes 3 186.42 6.45 6.04 4.29 12%

MDP Global Yes 4 186.67 6.50 6.06 4.30 12%

MDP Global Yes 5 182.10 6.58 6.02 4.30 12%  
 
 There is gradual increase in outcome deltas 
(~10%, 6.01 vs. 6.58), though CPUC stays relatively flat.  
This is not surprising, given that lower outcomes can be 
compensated for by lower costs of less treatment or 
choosing less expensive treatment actions, so a more 
myopic algorithm can still be relatively cost effective.  It 
should be noted that the simulation-based outcomes here 
follow a Gaussian distribution (by definition, see Section 
2.2), while real-world outcomes are typically more 
unpredictable, which can result in higher costs for more 
myopic models (which we observed previously [10]). 

It is unclear whether outcomes would increase 
further over larger horizon times or using different horizon 
models, such as receding horizons or forecast horizons 
[24,25].  Potential gains are limited here because we only 
make recommendations over 8 sessions, and no decision is 
made on the first or last session.  It should be noted that 
longer horizon times do increase the run-time, although 
using parallelized programming code largely mitigates that 
issue (see Section 2.3).  A typical patient, even at a 
horizon of 5, can be processed in about 2.2 seconds on a 
robust desktop personal computer. 
 One of the great advantages of temporal 
modeling is that it could potentially take into account the 
added risks of over-treatment.  The inclusion of patient 

safety/risks into such modeling may reveal further 
increased horizon-level benefits (See Section 4.2). 
 

3.4 Machine-Learning-Based Transition 
Models 
 We also evaluated the use of machine learning 
(ML) classifiers to dynamically create personalized 
transition models for each patient at each timepoint.  As 
described in Section 2.3, the goal wasn’t to build a highly 
polished classifier, but simply to provide a proof-of-
concept for the approach.  As such, we constructed an 
ensemble classifier based on max-probability “voting by 
committee” [21] similar as to done with the CDOI 
previously in [22], using five underlying algorithms: Naïve  
Bayes, Multi-layer Perceptron neural network, Random 
Forests, K-nearest neighbors, and logistic regression (see 
Section 2.3 for details).  Importantly, the application of the 
ML classifier was performed on-the-fly from the EHR’s 
backend data warehouse.  Results can be seen in Table 4. 
 

Table 4: ML-Classifier-Based Transition Models 

Decision Model

Transition 

Model

Missing 

Obs CPUC

Avg Final 

Delta

Std Dev 

Final 

Delta

Avg # of 

Services

% Patients 

Max Dosage

MDP Global Yes 182.10 6.58 6.02 4.30 12%

MDP + ML Global Yes 177.12 6.71 6.03 4.25 10%  
 
 The results show that the incorporation of ML-
classifier-based transition models does slightly improve 
decision-making, with lower CPUC and higher outcomes.  
The gains were small, however.  What is important here 
though – and what we emphasize – is that the approach 
showed modest success even with an admittedly less-than-
optimal classifier.  Overall classification performance – 
based on the ability to accurately predict three classes of 
the patients’ outcome: deterioration, flatline, or 
improvement – was roughly 50% (over 33% random 
chance, area-under-curve: AUC=0.59).  Incorporation of a 
more polished classification scheme – and/or other data 
points (e.g. genetics) – would likely hold promise to 
enhance the results seen in the proof-of-concept here. 
 As we have argued previously, incorporation of 
such individualized transition models through use of ML 
classifiers provides a potential practical avenue for 
implementation of personalized medicine approaches in 
EHRs and real-world clinical practice [10]. 
 

4. Significance and Impact 
4.1 General Conclusion 

We addressed several practical issues related to 
temporal modeling in an applied setting (healthcare), 
building simulations based on actual patient data from a 
real-world clinical electronic health record (EHR) while 
using a non-disease specific approach.  First, we provided 
ground truth for the simulation-based approach against 
actual clinical data.  Next, we evaluated the trade-off 
between costs and outcomes and found that the optimal 
trade-off may be a function of a dynamical system of 
relative values of costs and effects between treatment 
actions (rather than absolute values).  Such an approach 



may allow optimal reward functions to be derived from 
clinical data.  We also evaluated the effects of increasing 
finite horizon values, which showed a gradual increase in 
outcomes while cost effectiveness remained relatively flat.  
Importantly, parallelizing the code (so that multiple 
patients can be run at once) is essential to maintaining 
reasonable run-times at higher horizon levels.  Finally, we 
evaluated a proof-of-concept for integrating ML-based 
transition models into temporal models like MDPs.  The 
results showed that even a relatively poor classifier can 
produce small gains in performance and highlights the 
potential of such an approach for further exploration.   
Individualized transition models via such ML integration 
provide a potential practical avenue for implementation of 
personalized medicine approaches in EHRs and real-world 
clinical practice [10]. 

Temporal modeling approaches provide the 
potential to capture certain aspects of human cognition – 
the dynamic interplay of perception (observation) and 
action (treatment) over time.  To best assist us, our clinical 
computing tools should approximate the same process.   
The more immediate goal is to offload certain cognitive 
tasks into the tools and artifacts around us, rather than 
providing data in the form of, say, a line graph, which still 
requires the bulk of computation and interpretation to 
occur in the human brain.  For example, a line graph of a 
patient’s outcome history or predicted trajectory doesn’t 
necessarily indicate “what to do” in terms of treatment.  
Should treatment be stopped?  Changed?  Increased?  If 
the patient has shown improvement (for chronic illness), 
should they be shifted into maintenance treatment [14]?   

This, at its most basic level, is the same 
functionality provided by a notepad and pen, or by a 
calculator.  It is simply an extension of such principles 
deeper into the realm of cognitive tasks.  This approach 
also fits into the vein of cognitive computing, though more 
from an algorithmic front than a hardware one [26].  At a 
broader level, even the human visual system is thought to 
rely on environmental scaffolding of invariant features 
[27].  Re-conceptualizing artificial intelligence tools as a 
form of such cognitive scaffolding thus may provide better 
synergy with the way our brains already interact with the 
environment. 

However, practical issues, like the ones addressed 
in this paper, are challenges that must be tackled in order 
to integrate machine learning or artificial intelligence 
models into domains such as healthcare.  For instance, 
understanding the optimal trade-off between costs and 
outcomes is key [2,3,12].  If a system/model cannot 
effectively evaluate the utility of its decisions, it cannot 
make/recommend good decisions.  Furthermore, if the 
utility of those decisions is a product of interacting 
components of some complex system, then characterizing 
those dynamics is essential (see Section 3.2).  This is 
similar to arguments about trade-offs between 
exploration/exploitation in the reinforcement learning 
literature [28]. 
 

4.2 Future Work 

There are a number of other aspects to temporal 
modeling that remain to be explored.  Notably, 
incorporation of patient safety/risks into such modeling 
holds great promise to fully leverage the advantages.  One 
of the greatest problems with over-treatment is that is 
exposes patients to unnecessary risks, side effects, and 
complications.  Being able to stop treatment - or reduce 
treatment levels (e.g. maintenance treatment) – at the 
appropriate time is key.  That is something that a myopic, 
greedy algorithm may or may not be able to address 
appropriately [1].  Quantification of such safety/risks is, of 
course, a critical aspect.  Further exploration of this topic 
is warranted, as well as linking empirical results from real-
world EHR data to theoretical models [12]. 

Another issue worth exploring is the effects of 
variation of the missing observation rates.  In this work, 
we used the same value in all simulations as was 
calculated from our real dataset (approximately 30%).  
However, higher levels of missing observations force the 
AI physician agent to rely more on belief state 
calculations, which could affect performance.   

Treatment adherence variability (e.g. medication 
adherence) is also a challenge in providing healthcare.  For 
instance, in the EHR data we used here, nearly 75% of 
patients did not adhere to medication treatment at least 
once (e.g. missed a dose one day), and that approximately 
25% of doses were missed overall.  Thus, treatment 
adherence operates at two levels: the patient and the 
treatment.  However, it is not equally distributed across 
patients – a small subset of patients who don’t adhere 
make up a bulk of the missed treatments, and many 
patients just occasionally miss one.  The question is what 
effect this distribution of non-adherence may have on 
temporal modeling of clinical decision-making.  Can an AI 
agent based on temporal modeling mediate its treatment 
recommendations based on non-adherence probabilities 
for individual patients? Such questions could be 
empirically explored through careful simulation of real-
world patient data. 

A final issue we would like to point out here is 
that there are further possibilities of integrating learning, 
such as temporal-differencing (TD), into the historical-
calculated transition models.  This in effect is a simple 
way to take advantage of both prior knowledge (data from 
historical patients in the EHR) and reinforcement learning 
principles to produce the AI framework.  At the most basic 
level, we are updating the transition probabilities using 
current information from patients being treated by the AI 
framework.  At a higher level, there may be some effects 
from allowing an AI framework to influence clinical 
decisions – integration of something like TD learning 
allows the system to learn from its successes and mistakes, 
similar to “growing batch” reinforcement learning [29].  
This approach is extensible to transition models based on 
machine learning classifiers (see Section 3.4).  It may also 
be extensible to patterns gleaned from temporal data 
mining [30-32].  Optimally, the TD learning adjustments 
could be held out as weights that would applied to the 
transition probabilities at run-time (similar to predictive 



state representations [33]), which would allow the machine 
learning/data mining classifiers to be updated over time. 
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