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Abstract—This paper presents the results of a pilot study 

measuring and evaluating the intervention effects of voluntary 

in-home use of a socially assistive robot by older adults diagnosed 

with depression. The study was performed with 8 older adult 

patients over the course of one month, during which participants 

were provided the robot to use as they desired in their own 

homes. During the in-home study, several types of data was 

collected, including robotic sensor data from a collar worn by the 

robot, daily activity levels via a wristband (Jawbone) worn by the 

older adults, and weekly health outcome measures. Results of 

data analysis of the robotic intervention suggest that: 1) the use 

of the Paro robot in participants’ homes significantly reduced the 

symptoms of depression for a majority of patients, and that 2) 

weekly fluctuations in patient depression levels can be predicted 

using a combination of robotic sensor data and Jawbone activity 

data (i.e. measuring their general activity levels and their 

interactions with the robot). 
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I. INTRODUCTION 

The use of robots in healthcare has been gaining attention in 
recent years as a possible method for providing physical and 
social assistance to people with various health conditions and 
their caregivers [1]. A promising area of study in healthcare 
robotics focuses on providing solutions for eldercare [2], 
particularly through social interaction and companionship, 
which is more feasible than technical assistance due to the 
current status of robotic technology development. Such 
“socially assistive robots” (SARs) have been shown to provide 
positive benefits in ameliorating cognitive decline, catalyzing 
social interaction, and decreasing loneliness often experienced 
by older adults [3,4].  

Most implementations and evaluations of eldercare SARs 
to date have been performed in healthcare institutions, such as 
hospitals, long term care facilities, aassisted living, as well as 
day care centers. With the change in priorities in healthcare 
towards more preventive, patient-centered, and community-
based services, the potential for using robots to preclude people 
from entering institutions in the first place becomes a pressing 

issue. However, very few previous studies have addressed the 
use of robots in the homes of older adults. Those that have 
explored assistive robotics in the home have focused on the 
possibility of acceptance of such robots by the older adult 
population [5]. The few studies that have collected data on 
therapeutic SARs’ use in the homes of older adults have shown 
robots are generally feasible and accepted by users, but have 
not clearly identified whether there are clinical benefits of their 
domestic use [6-8].  

The seal-like companion robot Paro has been used in many 

eldercare interventions, though mostly in institutional 

environments. Studies of Paro’s use as a SAR have shown it 

can have positive effects by decreasing loneliness and 

increasing social interaction in randomized control trials 

[9,10].  Earlier naturalistic studies with Paro also showed that 

it could ameliorate depression symptoms in patients in 

institutionalized settings [4,11].  However, a randomized 

control trial in an institutionalized setting suggested that 

PARO has no significant effects on depression or quality of 

life [6]. 

As such, there is limited and conflicting information about 

the use of SARs for depression therapy.  Moreover, there is a 

particular dearth of findings relating to the use of SARs for 

depression outside of institutionalized settings, i.e. in people’s 

homes.  Arguably, the use of SARs for depression in domestic 

environments presents a very different setting, with a 

distinctive population (i.e. independently living older adults).  

In-home applications hold potential to curb future healthcare 

costs, by reducing or delaying the need for institutionalized 

care [12]. However, successful implementation requires that 

design issues related to both the design of the robot and the 

design of the therapeutic intervention be addressed [13,14]. 

The main topic of this paper extends this previous work on 
SARs for the elderly by focusing on whether we can detect any 
significant impacts on depression in in-home settings using a 
robot intervention therapy, and/or predict changes in 
depression levels via robotic sensor data. 
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II. BACKGROUND AND MOTIVATION 

A. Socially Assistive Robotics in Eldercare 

Older adults are one of the main target users for SARs, which 

are envisioned as complementing clinicians in the course of 

treatment [15], as companions that can help relieve the 

loneliness of older adults through social interaction [9,16], as 

communication devices that bring older adults into more 

regular contact with caregivers and loved ones [17], and 

finally, as technologies that can support and motivate 

behavioral change to support better health outcomes [12]. 

While many robots have been developed for assistive use 

in institutions such as long term care facilities, nursing care 

homes, and hospitals [18,19], economic and health concerns – 

both individually as well as societally speaking – underscore 

the importance of developing assistive technologies, including 

robots, for domestic environments. Researchers have found 

that older adults prefer to stay in their homes rather than 

relocating to eldercare institutions, although more than one 

third of older adults experience institutionalization at some 

point in their lives [20]. Healthcare has also recently shifted 

towards a focus on improving health, rather than solely 

treating disease [21].   As such, there is a critical need to focus 

on how innovative technologies, such as SARs, can be utilized 

as preventative tools outside of institutional settings, to delay 

onset of disease. 

The needs, wants, and responses of people who are still in 

their homes – relatively healthy and independently living – 

regarding SARs are likely to be distinct from those in a 

hospital or nursing home setting.  Real-world patient 

populations are notoriously different from those seen in 

controlled, experimental studies, which in a healthcare sense 

also necessitates certain practice-based-evidence approaches 

[22,23]. It is therefore important to empirically study how 

SARs might be used as tools for preventive healthcare in 

home environments, as technologies that can improve people’s 

quality of life by affecting their health status over time as part 

of their everyday lives.  

B. The Use and Effects of Paro Robot in Eldercare  

PARO (See Figure 1) is a SAR resembling a baby seal in 

appearance and behavior. It is used for therapy with older 

adults, children, and individuals with physical and cognitive 

disabilities, and was commercialized in Japan in 2005 and in 

Europe and the USA in 2009 [16]. PARO interacts with users 

by turning its head, waving its tail and flippers, opening and 

closing its eyes, and vocalizing with over 20 sounds. It 

responds to touch (petting, stroking, hitting), changes in 

bodily orientation, sound, and ambient light, and can adapt its 

behavior through reinforcement learning.  

PARO’s therapeutic efficacy has been evaluated through 

short- and long-term studies [2]. The majority of studies were 

performed with older adults in Japan, with additional 

evaluations in Denmark, Germany, the UK [24], and New 

Zealand [9]. The main focus of research has been on PARO’s 

social, psychological, and physiological effects on users. Most 

studies involved residents in nursing homes interacting with 

PARO in small group activities supervised by staff or having 

free access to the robot (e.g. [4]).  Findings suggest that PARO 

has a positive emotional effect on users and can lower their 

stress levels [16,25], and that its regular use can reduce 

loneliness [9]. Studies of one-on-one interactions between 

users and PARO suggest that people’s interpretations of 

PARO depend on their personal attitudes toward technology, 

their psychological state, and prior experiences with animals 

[26,27].  

 

 

Fig. 1. The PARO seal-like socially assistive robot. 

III. METHOD 

A. Participants 

For this pilot study, 8 participants were recruited from a local 

outpatient mental health clinic in the Midwestern United 

States. All participants were diagnosed with chronic 

depression, were over the age of 55, and lived independently 

in their own homes.  Patients with any sort of secondary 

diagnosis of psychosis were excluded.  All of the participants 

had co-occurring physical illnesses, such as diabetes, 

hypertension, or cardiovascular disease. 

Recruitment occurred in-clinic, with the help of embedded 

research assistants. After completion of informed consent 

procedures, the participants’ clinical data were extracted from 

their electronic health record (EHR) for subsequent use and 

analysis. 

B. Intervention Protocol 

Upon joining the study, all participants attended two 

introductory focus groups in which they learned about and 

discussed the use of SARs in healthcare in general and with 

older adults more specifically. They were also introduced to 

the types of sensors used in robots, as well as to the particular 

sensors used in this study (light, ambient sound, and motion 

sensors) and discussed the potential usefulness of data from 

such sensors and their privacy preferences and concerns 
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regarding such sensing, with the researchers. The workshops 

were held with participants in groups of 2 to 3 at a time. 

During the workshop, participants were introduced to the 

PARO robot and researchers explained how the robot should 

be used.  

The in-home intervention consisted of a four-week 

protocol, during which each participant interacted with one 

researcher from the team to provide them with Paro and 

collect relevant data. The first step was a pre-intervention 

visit, where baseline data were collected, the Paro robot was 

again introduced, and participants were given a brief handout 

explaining how the robot should be used. During the following 

three weeks, researchers made weekly visits to the participants 

to collect additional self-report data on participant health 

outcomes, daily activities, and their use of Paro. At the end of 

the fourth week, researchers made a final post-intervention 

visit to collect final outcomes and remove Paro from 

participants’ homes.  All aspects of the intervention were 

conducted in the subject’s home. 

Three types of data were collected during the 

intervention: clinical outcomes data, Jawbone data, and sensor 

data from a custom-designed collar worn by Paro. 

For clinical outcomes, the PHQ9 (measure of depression 

symptoms), the WHOQOL (quality-of-life measure), and the 

UCLA loneliness scale were collected both pre/post and 

weekly. Additionally, the OQ-45 (a measure of daily 

functioning) was collected only pre/post (to minimize survey 

fatigue due to the length of the questionnaire). 

Data was collected from commercially available Jawbone 

wearable wristband sensors (https://jawbone.com/).  This data 

included information about a subject’s activity levels, 

metabolic rate, and sleep patterns throughout the day. 

Finally, data was also collected from a robotic sensor 

collar developed at Indiana University’s R-house robotics lab.  

This collar was attached around Paro’s neck during the study.  

The collar was equipped with sensors to collect information 

about sound, ambient light, and motion of the robot (via a 3D 

accelerometer). This information was used to detect 

interaction patterns between the robot and subject.  The data 

was collected continuously, roughly once per second.   

 

 

Fig. 2. Ambient sound and light sensors, as well as a motion sensor, were 

embedded in a collar worn by Paro during the intervention. 

C. Analysis 

Analysis of changes in pre/post outcomes was conducted via t-

tests for each of the clinical outcomes discussed in Section 

2.3.  

Furthermore, machine learning algorithms were applied 

using the Knime analytical platform (www.Knime.com) to see 

if weekly changes in depression symptoms (as per PHQ9 

levels) over time could be predicted using data from the 

robotic collar sensors and the Jawbone worn by participants.  

This was done with a multi-layer perceptron neural network 

via Weka 3.7 within Knime (with standard settings) [28], 

using 3-fold cross validation (fold number limited due to 

sample size).  Additionally, feature selection was performed to 

determine which variables were most important to this 

prediction, using gain ratio [29]. 

IV. RESULTS 

A. Statistical Analysis of Pre/Post Outcome Changes 

Differences before and after the intervention were investigated 

using two-tailed t-tests for each of the four outcomes.  Results 

are shown in Table 1.  We were particularly interested in 

seeing whether there are increases in the OQ45 and 

WHOQOL (indicative of higher functioning) and reductions 

in the PHQ9 and UCLA scale (indicative of less symptoms of 

depression) in participants.   

TABLE I.  COMPARSION OF PRE VS. POST OUTCOME VALUES OF PATIENT 

HEALTH STATUS 

Outcome Pre Value Post Value
Avg Diff 

Pre/Post
T-test Sign.

OQ45 72.7 76.9 4.1 0.486

WHOQOL 46.2 49.9 3.7 0.192

PHQ9 15.7 11.7 -4.0 0.047

UCLA 54.9 51.7 -3.1 0.286  

https://jawbone.com/
http://www.knime.com/


In short, the only significance found in differences 

between pre/post values was for the PHQ9 (p=.047). 

Significant reductions in the PHQ9 (depression symptoms) 

were seen for approximately 63% of patients (5/8), while only 

1 patient saw any significant increase (the other two saw no 

change).  Obviously, given the limited sample size in the pilot 

study, these results should be taken with caution.  However, 

they are comparable to effects seen from anti-depressants in 

the first 30 days of use [30].  This suggests that in-home social 

robots may hold potential as an alternative non-

pharmacological intervention for depressed patients. 

B. Predicting Weekly Depression Level Changes with Sensor 

Data 

We also investigated whether weekly fluctuations in 

depression levels (as per the PHQ9 scores) could be predicted 

using the robotic collar sensor data and the Jawbone activity 

data.  Interaction patterns between the robot and subject were 

determined based on the sensor data from the collar and 

converted into a binary variable (interaction occurring, yes or 

no) for each time point (see Section IIIB). 

In short, we found using just a small number of variables 

from the robotic collar and Jawbone, along with baseline 

scores from the WHOQOL and UCLA measures, that we 

could predict – using a neural network – those weekly 

fluctuations in depression accurately roughly 74% (+/- 6%) of 

the time, or in other words somewhere between 68% and 80%.  

The large error range reflects the uncertainty given the limited 

sample size in the pilot. 

Feature selection was performed to determine a parsimonious 

set for prediction, excluding variables that had little to no 

impact. Variables used in the final model are shown in Table 

2. 

TABLE II.  MACHINE LEARNING MODEL – FINAL FEATURE SET  

 

 

V. DISCUSSION 

Prior studies with Paro in nursing home environments have 

seen decreases in symptoms of loneliness, depression, and 

stress levels in those controlled settings [2,4,11]. Our study 

showed that such robots can also reduce depression in in-

home settings, as measured by the PHQ-9.  These reductions 

for the robotic intervention were similar as that seen using 

anti-depressants in the first 30 days [30]. 

Of interest was that significant changes were not seen in 

other outcome measures (WHOQOL, OQ-45, and Loneliness 

Scales), which may suggest those take longer to change (than 

30 days), or that a robotic intervention does not affect those 

aspects.  This question is still open for debate, requiring 

further empirical study. 

We were also able to predict with reasonable accuracy 

(~74%) weekly fluctuations in depression levels using robotic 

sensor data and Jawbone activity data.  This opens the 

possibility in the future of inferring patients’ health status in 

their own homes using only the robotic and wearable sensor 

data, without collecting the actual outcomes themselves.  This 

would be a boon for remotely monitoring patients day-to-day 

health, since administering actual outcomes requires 

manpower and time that is often in short supply in real-world 

clinical settings. Additionally, the type of data collected are 

low-fidelity and therefore potentially minimally privacy 

invasive (i.e. do not include cameras or recognition of specific 

people or activities in the environment), and so might be more 

acceptable and appropriate for use in intimate environments 

like the home.  

One critical limitation in this study is sample size (n=8), as 

it was only intended as a pilot study. The results are 

promising, but need further validation. Currently we are 

working on a larger multi-institution randomized control trial 

as a follow-up, with a much larger sample size (n~80-100 

patients).  Other limitations to using robotics as a depression 

therapy include issues with payment and insurance 

reimbursement for such technologies, which need to be 

addressed before such robots could be used in clinical 

practice. 

VI. CONCLUSION 

The results of an in-home robotic intervention for patients 

with chronic depression suggest that it is both: 1) effective in 

reducing depression symptoms for most patients and 2) holds 

potential for remote monitoring of those patients in their own 

homes to infer fluctuations in depression levels from sensor 

data which can in turn be used to alert clinicians.  In other 

words, it is essentially a “kills two birds with one stone” 

solution, providing therapeutic benefits while doubling as a 

remote monitoring tool.  Further research is needed to explore 

these capabilities. 
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