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Abstract—Electronic health records (EHR’s) are only a first 

step in capturing and utilizing health-related data - the problem 

is turning that data into useful information.  Models produced 

via data mining and predictive analysis profile inherited risks 

and environmental/behavioral factors associated with patient 

disorders, which can be utilized to generate predictions about 

treatment outcomes.   This can form the backbone of clinical 

decision support systems driven by live data based on the actual 

population.  The advantage of such an approach based on the 

actual population is that it is “adaptive”.   Here, we evaluate the 

predictive capacity of a clinical EHR of a large mental 

healthcare provider (~75,000 distinct clients a year) to provide 

decision support information in a real-world clinical setting.  

Initial research has achieved a 70% success rate in predicting 

treatment outcomes using these methods. 

 

I. INTRODUCTION 

ECENT years have the seen the proliferation of 

electronic health records (EHR’s) across the mental 

healthcare field and the healthcare industry in general.  The 

current challenge is turning data collected within EHRs into 

useful information.  An EHR is only the first step – data must 

be leveraged through technology to inform clinical practice 

and decision-making.  Without additional technology, EHR’s 

are essentially just copies of paper-based records stored in 

electronic form.   

Centerstone, the largest community-based mental health 

provider in the United States, is conducting research and 

development on a number of real-time decision support 

systems – including areas such as clinical productivity and 
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optimal treatment selection – that combine elements of data 

mining and predictive modeling with actual clinical practice.  

Data mining can capture complex patterns about patients’ 

genetic, clinical, and socio-demographic characteristics, 

which can be used to generate predictions about treatment 

outcomes. As a result, inherited risks and 

environmental/behavioral factors associated with patient 

disorders can be profiled and used to construct the backbone 

of clinical decision support systems driven by live data based 

on the actual population.  

Beyond this, there is stark evidence of a 13-17 year gap 

between research and practice in clinical care [1].  This 

reality suggests that the current methods for moving scientific 

results into actual clinical care are lacking. Furthermore, 

evidence-based treatments derived from such research are 

often out-of-date by the time they reach widespread use and 

don’t always account for real-world variation that typically 

impedes effective implementation [2].  Indeed, these issues 

have been a major reason for the push for clinical decision 

support in healthcare.  However, many of the current decision 

support systems rely on expert-based or standards-based 

models, rather than data-driven ones.  The former are based 

on statistical averages or expert opinions of what works for 

groups of people in general, whereas data-driven models are 

essentially an individualized form of practice-based evidence 

drawn from the live population.  The latter falls within the 

concept of “personalized medicine.”  

The ability to adapt specific treatments to fit the 

characteristics of an individual’s disorder transcends the 

traditional disease model.  Prior work in this area has 

primarily addressed the utility of genetic data to inform 

individualized care.  However, it is likely that the next 

decade will see the integration of multiple sources of data - 

genetic, clinical, socio-demographic – to build a more 

complete profile of the individual, their inherited risks, and 

the environmental/behavioral factors associated with disorder 

and the effective treatment thereof [3].  Indeed, we already 

see the trend of combining clinical and genetic indicators in 

prediction of cancer prognosis as a way of developing 

cheaper, more effective prognostic tools [4], [5], [6].   

However, data mining alone – or clinical decision support 
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alone – are only components of a larger potential system.  

Utilizing them in conjunction creates a system of real-time 

data-driven clinical decision support, or “adaptive decision 

support.”  The result is a more responsive and relevant 

model, essentially representing a form of rudimentary 

artificial intelligence that “lives” within the clinical system, 

can “learn” over time, and can adapt to the variation seen in 

the actual real-world population.  The approach is two-

pronged – both developing new knowledge about effective 

clinical practices as well as modifying existing knowledge 

and evidence-based models to fit real-world settings.   

Continuous improvement of clinical decision support and 

advancement of clinical knowledge are seen as key features 

for future systems [7].   In terms of actual application, 

modeling can be used to support clinical decisions provided a 

flexible, adaptable IT framework can consolidate data from 

different sources.  Typically, data warehousing provides such 

an infrastructure.  As opposed to the EHR, a data warehouse 

does not have to be tied to a single provider organization, 

increasing its power, scope and utility.  Patterns learned from 

past experience can then be applied to new clients as they 

enter the system (Fig. 1). 

 

In this study, we describe data mining and predictive 

modeling work that utilizes clinical indicators to predict 

client outcomes within the Centerstone system.  Those 

algorithms can then be applied to new clients to aid in 

selection of the optimal clinical treatment based on a number 

of possible “service packages”.  This approach was cross-

diagnostic, and the services distinguished only at a gross 

level (therapy, medical, case management).  Nonetheless, 

results indicate the approach as a promising avenue of 

research.  The initial work was necessitated by changes to a 

state-run payor (non-Medicaid “Safety Net”) in the state of 

Tennessee, which compelled Centerstone to optimize certain 

services for the patients most in need.  The goal was thus to 

determine the probability that a given set of services would 

result in average or above-average outcomes for a particular 

client and service package.  This method would provide 

clients with the best probability of positive outcomes while 

minimizing use of services unlikely to result in a positive 

outcome, increasing the availability of limited resources for 

other clients.  

II. METHODS  

A. Data Extraction 

Data was extracted from Centerstone’s electronic health 

record into a specialized schema in the data warehouse for 

data mining applications.  The target variable was the follow-

up CARLA outcome measure (Centerstone Assessment of 

Recovery Level – Adult) at 6 months post baseline.  The 

CARLA is a measure of level of recovery developed and 

validated by clinical experts at Centerstone. Using the 

CARLA, clinicians provide a systematic rating of client 

symptoms, functioning, supports, insight, and engagement in 

treatment.  Predictor variables initially extracted for the 

analysis included Baseline CARLA Score, Gender, Race, 

Age, Baseline Tennessee Outcomes Measurement System 

(TOMS) Symptomatology Score, Baseline TOMS 

Functioning Score, Previous Mobile Crisis Encounter 

(binary, yes/no), Diagnosis Category, Payor, Location, 

County , Region Type (Urban or Rural), Service Profile 

(types of services received) and Service Volume (amount of 

services received).  The initial sample was delimited to June 

1, 2008 through approximately June 1, 2009 and included 

only new intakes at time of baseline CARLA (had not seen 

previously in Centerstone’s clinics since at least 2001).  After 

these various filters were applied and data was screened for 

missing key fields (such as the CARLA at both baseline and 

follow-up), the final sample size for initial modeling was 423.  

  

B. Data Modeling 

After the initial data extraction and calculations were 

made, data was loaded into KNIME (Version 2.1.1) [9], an 

advanced data mining, modeling, and statistical platform.  

The initial analysis focused on the change in CARLA scores 

over time.  The primary question was whether clients would 

obtain average or better outcomes based on services received 

(or vice versa, worse outcomes).  As such, the target variable 

– improvement in clinical outcome – was discretized into a 

binary variable of plus/minus the mean (equivalent to equal 

bins classification).  The consequences and assumptions of 

reduction to a binary classification problem are addressed in 

[6], noting that the issues of making such assumptions are 

roughly equivalent to making such assumptions around 

normal distributions.  All predictor variables were z-score 

normalized.  Subsequently, all predictor variables were either 

1) not discretized (labeled “Bin Target”), or 2) discretized 

via CAIM (Class-Attribute Interdependence Maximization).  

CAIM is a form of entropy-based discretization that attempts 

 
Fig. 1.  Clinical Decision Support – Data Flow Diagram 
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to maximize the available “information” in the dataset by 

delineating categories in the predictor variables that relate to 

classes of the target variable.  By identifying and using 

patterns in the data itself, CAIM has been shown to improve 

classifier performance [8].  It should be noted that not all 

models are capable of handling both discretized and 

continuous variables, and thus both methods were not applied 

to all modeling methods.  Additionally, some methods, such 

as certain kinds of neural networks or decision trees, may 

dynamically convert numeric variables into binary or 

categorical variables as part of their modeling process.  As 

such, even when no pre-discretization was performed, it may 

have occurred within the modeling process itself. 

Multiple models were constructed on the dataset to 

determine optimal performance using both native, built-in 

KNIME models as well as models incorporated from WEKA 

(Waikato Environment for Knowledge Analysis; Version 

3.5.6) [10]. Models were generally run using default 

parameters, though some experimentation was performed to 

optimize parameters.  Namely, in the results shown here, 

there were three exceptions: 1) Bayesian Network – K2 was 

set MaxParents=3, 2) MP Neural Network was set 

Decay=True, and 3) K-Nearest Neighbors as set KNN=5. 

Models tested included Naïve Bayes[10], HNB (Hidden 

Naïve Bayes [11]), AODE (Aggregating One-Dependence 

Estimators [12]), Bayesian Networks [10], Multi-layer 

Perceptron neural networks [10], Random Forests [13], J48 

Decision Trees (a variant of the classic C4.5 algorithm [14]), 

Log Regression, and K-Nearest Neighbors [15],  

Additionally, ensembles were built using a combination of 

Naïve  Bayes, Multi-layer Perceptron neural network, 

Random Forests, K-nearest neighbors, and logistic 

regression, employing forward selection optimized by AUC 

[16].  Voting by committee was also performed with those 

same five methods, based on maximum probability [17].  Due 

to the number of models used, detailed explanations of 

individual methods are not provided here for brevity, but can 

be found elsewhere (e.g. [10] and [18], and references 

therein).   

C. Model Evaluation 

Model performance was determined using 10-fold cross-

validation [10].  All models were evaluated using multiple 

performance metrics, including raw predictive accuracy; 

variables related to standard ROC (receiver operating 

characteristic) analysis, the AUC (area under the curve), the 

true positive rate, and the false positive rate [19] and Hand’s 

H [20].  The data mining methodology and reporting is in 

keeping with recommended guidelines [21], [22], such as the 

proper construction of cross-validation, incorporation of 

feature selection within cross-validation folds, testing of 

multiple methods, and reporting of multiple metrics of 

performance, among others.  

Additionally, some of the better performing models were 

evaluated using feature selection prior to modeling (but 

within each cross-validation fold).  The feature selection 

methods used include univariate filter methods (Chi-squared, 

Relief-F), multivariate subset methods (Consistency-Based –

Best First Search, Symmetrical Uncertainty Correlation-

Based Subset Evaluator) and wrapper-based (Rank Search 

employing Chi-squared and Gain Ratio).  The advantages and 

disadvantages of these different types of feature selection are 

well-addressed elsewhere [23].  

 

III. RESULTS  

 

The results of the various combinations of modeling 

method and discretization can be seen in Table 1, sorted by 

AUC.  The highest accuracies are between 70-72%, with 

AUC values ranging .75-.79.  It should also be noted that the 

Spearman’s rank-order correlation between AUC and Hand’s 

H was .977 (p<.01), indicating little divergence between the 

two measures, at least on this particular dataset.  Hand [20] 

has indicated that these two measures will diverge when 

misclassification costs vary across methods.  We found no 

evidence of that in this case, or at least that the issue was not 

significant.  These initial results suggest a predictive capacity 

of the current EHR data within Centerstone.  We suspect that 

utilizing outcome measures designed to specifically measure 

change over time will improve this capacity. 

 

 Table 1: Model Performance 

Model Binning Accuracy AUC TP rate FP rate H

 AODE CAIM 72.3% 0.7769 74.6% 32.6% 0.2739

 Lazy Bayesian Rules CAIM 71.2% 0.7741 75.2% 36.2% 0.2695

 Naïve Bayes CAIM 71.6% 0.7706 76.5% 36.5% 0.2705

 Bayes Net - K2 CAIM 70.7% 0.7690 75.4% 37.4% 0.2550

 Bayes Net - K2 Bin Target 70.4% 0.7677 75.7% 38.1% 0.2561

 Ensemble CAIM 70.9% 0.7604 76.9% 38.1% 0.2452

 Naïve Bayes Bin Target 68.6% 0.7587 74.7% 41.0% 0.2410

 Bayes Net - TAN CAIM 70.0% 0.7567 73.3% 37.0% 0.2302

 Bayes Net - TAN Bin Target 69.7% 0.7561 73.4% 37.6% 0.2392

 MP Neural Net CAIM 70.7% 0.7534 75.6% 37.6% 0.2273

 Ensemble Bin Target 70.2% 0.7500 74.5% 37.6% 0.2195

 Classif via Linear Reg Bin Target 68.8% 0.7486 71.5% 37.6% 0.2356

 MP Neural Net Bin Target 69.5% 0.7467 73.0% 37.7% 0.2368

 K-Nearest Neighbor CAIM 69.5% 0.7377 73.6% 38.4% 0.2093

 Vote CAIM 68.1% 0.7362 72.7% 40.5% 0.2011

 Random Forest Bin Target 66.0% 0.7238 70.3% 43.1% 0.2040

 Random Forest CAIM 67.8% 0.7222 71.7% 40.1% 0.1896

 Log Regression CAIM 67.8% 0.7206 77.7% 47.9% 0.1812

 Log Regression Bin Target 67.1% 0.7117 71.7% 41.7% 0.1799

 J48 Tree CAIM 68.1% 0.6813 71.5% 39.4% 0.1688

 Vote Bin Target 63.4% 0.6609 76.2% 57.1% 0.1239

 J48 Tree Bin Target 66.9% 0.6544 72.4% 32.6% 0.1487

 K-Nearest Neighbor Bin Target 63.8% 0.6359 65.9% 44.2% 0.0786

10X Cross-Val (partitioned)

 
These models were then applied to a series of pre-

determined “service packages” that most common clients 

receive.  Client data is Cartesian-joined to the service 

packages to produce predictions for combinations of each 

and each service package, in essence a “what if” analysis.  

The results of one of the higher performing models by AUC 
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(Bayesian Network – K2) were used to generate predictive 

information at the time of intake for the clinician.  

Implementation with the live system is being addressed in a 

separate, upcoming study (data not shown).  However, 

examples of these predictions (based on actual data) can be 

seen in Figures 2 and 3. 

 

 
Fig. 2. Example 1 of treatment   recommendations using 

pre-set “service packages” 

 

 
Fig. 3. Example 2 of treatment   recommendations using 

pre-set “service packages” 

The results of feature selection were mixed (data not 

shown).  Although some methods were able to produce 

similar performance using smaller, more parsimonious 

feature sets than the full feature set models (most notably 

wrapper-based approaches), they generally did not improve 

performance significantly.  Additionally, the selected feature 

sets displayed a marked degree of variability across 

methodologies.  This is a common issue, to be expected with 

complex problems [24], [25].  In many domains there are 

potentially multiple models/feature sets that can produce 

comparably good results. 

 

IV. CONCLUSION 

Predictive modeling on live EHR data from a large 

community-based mental health provider has revealed the 

capacity of such systems to be used as the basis for an 

“adaptive” clinical decision support framework.   Even 

without work to enhance the EHR, models were built with 

over 70% accuracy and .75 AUC in predicting optimal 

clinical treatments.  It is likely through such an approach that 

the true potential of EHR’s can be realized.  Indeed, even 

recent popular media articles are picking up on this 

distinction between current EHR’s and their trumpeted 

potential (“Little Benefit Seen, So Far, in Electronic Patient 

Records” New York Times, 11/15/2009).   

 Without individualized care recommendations that have 

the capacity to rapidly incorporate changing evidence, 

adoption of evidence-based practice and treatment guidelines 

will continue to occur at a glacial pace. While there are many 

barriers to adoption of systematic treatment 

recommendations, one of the primary failings of common 

treatment recommendations is that they are based on 

statistical averages (e.g., “70% of people improve with 

medication X”). While those guidelines are helpful, 

practicing clinicians are keenly aware that treatments that 

have been shown to be highly effective in clinical trial 

populations are not always effective with individuals in real-

world settings. This is particularly true when the source 

research failed to adequately address variation due to gender, 

race, ethnicity, or a multitude of other potential factors. 

When recommended treatments don’t work, clinicians are 

frequently left to make critical decisions where research 

evidence is lacking.  

 The integration of electronic health records with 

rigorous data modeling as described herein can complement 

traditional research methods by filling gaps in knowledge, by 

suggesting new and possibly unanticipated avenues for 

systematic research, and by enabling rapid deployment of 

personalized evidence in field settings. New innovations for 

individualized care can literally be integrated into predictive 

models overnight, as opposed to the decades that research 

evidence often takes to diffuse into common practice. This is 

key to leveraging electronic health data.  Without modeling, 

EHR’s are only informative of what occurred in the past, not 

predictive of the future.  Without that predictive capacity, it 

cannot be used by clinicians as actionable information. 

 One limitation of this approach is that it requires large 

and diverse populations, diversity in practice, and reliable 

data. A small medical practice or group practice could not 
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generate enough data to produce reliable and replicable 

findings. It is therefore important for provider organizations 

to consider how to aggregate their data so that predictive 

models may be developed and fed back into local electronic 

health records. Privacy and security of health information 

will have to be paramount, or the risks to individual privacy 

may outweigh the collective benefit of data aggregation and 

prevent meaningful advances in care. 

 It is also worth noting that these models actually benefit 

from natural variation in clinical practice. The current drive 

toward standardization and consistency in treatment may 

actually inhibit innovation that would be identified through 

modeling efforts. While health research is generally informed 

by clinical theory and practice, most practice occurs outside 

the purview of academic medicine, and many exceptional 

clinical practitioners do not conduct research or publish 

innovations they may develop with their patients. Modeling 

can identify emerging clinical practices that are especially 

promising, and may accelerate the process of dissemination 

from one clinician to another.   

 In the work described here, the initial model was built 

across all diagnoses - including diagnosis used as a predictor 

variable – but work is proceeding to focus on building 

models that make personalized clinical predictions within 

diagnostic-specific groups.  Furthermore, research is 

continuing into analyzing more specific questions, moving 

from – “does the client need medications” – to “which 

medications are most likely to be effective for this particular 

individual”.  Mixing genetic (e.g. microarray) and clinical 

indicators, rather than using one or the other, is the most 

likely long-term avenue, although if and how these data 

sources should be combined is still a subject of intense 

debate [4], [5], [6]. 

 The purpose of this study was to test the feasibility of 

building clinically predictive models using data already 

existent in the EHR.  After this initial work, a new study is 

currently underway using improved outcome measures that 

are putatively better indicators of clinical improvement 

(CDOI – Client-Directed Outcome-Informed, [26]).  This is 

to be followed by the first controlled pilot study on actual 

implementation of this data-driven decision support model 

specifically for patients with depression at certain clinical 

sites.  In addition, we are developing a national data 

warehouse across several major mental healthcare providers 

from Michigan to Colorado to Arizona, in partnership with 

the Centerstone Research Institute’s Knowledge Network, a 

technology-based alliance of providers, academic 

researchers, and industry leaders.   Funding is also being 

sought to develop a gene expression database on a large 

portion of Centerstone’s clinical population, likely starting 

with clients with depressive disorders or schizophrenia.  

These future efforts will help to improve and validate these 

models. 
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