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a b s t r a c t

Modeling smartphone keyboard dynamics as the foundation of an early warning system
(EWS) for mood instability holds potential to expand the reach of healthcare beyond
the traditional clinic wall’s, which may lead to better ongoing care for chronic mental
illnesses such as bipolar disorder. Here, we investigate the feasibility of such a system
using a real-world open-science dataset. In particular, we are interested in whether
passive technology interaction patterns in real-world datasets reflect findings from more
controlled research trials, and the implications for clinical care. Data from 328 people
who downloaded an open-science app was analyzed using a variety of machine learning
methods, including different modeling methods (random forests, gradient boosting,
neural networks), different types of class rebalancing, and pre-processing techniques.
The aim was to predict fluctuations in PHQ scores in the weeks before the fluctuation
occurred. Various feature selection methods were also employed to identify the top
features driving the predictive patterns (out of total 54 starting features). Results showed
predictive accuracy around ∼90%, similar to controlled research trials, while revealing
a number of interesting features (e.g. PTSD and mood instability) that suggest future
research avenues. The findings from our analysis appear to indicate that real-world
interaction data from smartphones can be utilized as an EWS monitoring tool for
mood disorders like bipolar. We also discuss the broader applicability of ecological
momentary assessment (EMA) approaches to connected systems combining different
forms of pervasive technology interaction (smartphones, wearables, social robots) to
track everyday health status.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

The defining feature of bipolar disorder from other affective disorders is reoccurring manic/hypomanic and depressive
pisodes [1]. Those meeting the lifetime criteria for bipolar disorder Type I can have an average of 20 episodes of mania
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and depression lasting for months over the course of their lives [2]. As a result, it is one of the top 20 causes of disability
worldwide [3] with a lifetime prevalence of 2.4% [4]. Individuals with this disorder experience repeated changes in mood,
ranging between clinical definitions of mania and depression as well as subclinical fluctuations that occur on a more rapid
basis.

As such, this mood instability is known to be a critical component for understanding the prognosis of bipolar disorder.
his comes in two facets. First, as a symptom of the disease in patients suffering from it, which relates to their clinical
utcomes and treatment success [5,6]. Second, as a predictive factor for diagnosing bipolar disorder in undiagnosed
atients and for understanding the etiology of the disease [7]. Indeed, previous research has shown that mood instability
n families is a trait marker for bipolar development in other relatives [8,9]. For those with bipolar disorder, this instability
anifests not only as the characteristic fluctuations between syndromal depressive and manic states (as well as states
ith mixed features), but also as subsyndromal fluctuations during euthymia. Patients have also reported heightened
esponses when exposed to emotional stimuli in comparison to healthy controls, suggesting that there is an increase in
ffect intensity in addition to affective lability (i.e. increases in both strength and frequency) [10]. Greater mood instability
as been associated with worse functional outcomes long-term, independent of episode severity [6]. Given all of this,
odeling mood instability holds potential to enable better clinical care for bipolar patients by predicting changes in the
isease over time before those changes occur, on multiple time scales, even prior to a formal diagnosis.
Previous research has found significantly higher mood instability in the 60 days leading up to a clinical event of

epression or mania [11]. Thus, real-time monitoring of fluctuations in mood might be a target for preventative care
rior to an episode, which would contribute to the feasibility of predictive and personalized medicine [12]. One approach
o understanding mood instability in bipolar disorder is through technology interaction. Such interactions can theoretically
e predictive of mood instability in terms of their pace, rhythm, frequency, circadian patterns, etc. A number of human–
omputer interaction (HCI) researchers have evaluated the predictive power of these interactions with a variety of
echnology, including smartphones, wearables, and other mobile devices [13]. For instance, there are many studies looking
t the use of smartphones for monitoring of self-reported symptoms [9,14,15]. Most of the studies report mood instability
s an important factor, though the effects can vary depending on the specific type of bipolar (Type I versus Type II) as
ell as when comparing different types of symptoms (e.g. depressive versus euthymic) [16].
More recent studies have begun to examine the interactions with smartphone technology directly (rather than self-

eport surveys) as a method to predict mental health status, such as keyboard typing dynamics [17]. For instance, Mastoras
t al. [18] used typing dynamics to predict the existence of depression symptoms based on the PHQ with near 90% accuracy
n a case-control study of 25 individuals, using common machine learning (ML) methods such as Random Forests and
radient Boosting. Elsewhere, Cao et al. [19] evaluated a deep learning architecture based on gated-recurrent units (GRUs),
type of recurrent neural network) to predict depression scores in bipolar patients in a controlled trial of 20 individuals,
gain finding nearly 90% accuracy. Huang et al. [20] extended that work to incorporate the use of circadian rhythms as
redictive factor. These approaches connect to the broader concept of digital phenotyping in terms of diagnosis, treatment,
ymptom monitoring, and so on [21,22]. However, challenges remain in applying digital phenotyping in the real world
uring pervasive technology interaction, given the variations seen in actual clinical populations, small sample sizes of
ontrolled studies, and the current limits on explainability of AI predictions that are necessary to promote wide-scale
doption [23].

.2. Current study approach

The study here differs from the work mentioned above, in that we are focused on a naturalistic dataset of users
ypical of what may be seen in real-world clinical settings [17]. The data contains users who both have and do not have
ipolar disorder, as well as other mental health disorders, and is based on their pervasive interactions with a smartphone
i.e. typing dynamics). The data collection is not enforced as in a clinical trial or case-control study, but contains the types
f messy data typically seen in real-world clinical datasets and electronic health records [24]. A primary goal of this paper
s to evaluate how machine learning modeling of mood instability may work in real-world clinical care of bipolar patients,
utside the scope of controlled clinical studies.
In particular, we are interested in whether it is possible to use such modeling of passively collected mobile technology

ata as a sort of early warning system (EWS) for symptoms of bipolar disorder, which could then be used to inform clinical
reatment or trigger specific interventions [5]. As such, we focus below on predicting changes in depressive symptoms
n bipolar disorder based on data prior to the change. We chose to focus on depressive symptoms as these have been
found to dominate illness presentation and influence functional outcome more than manic symptoms [6,25]. Our primary
research questions here are two-fold: (1) is it possible to make such predictions with real-world open datasets, and (2)
does the accuracy of those predictions align with what has been observed in controlled trials in the existing literature.

1.3. Ecological momentary assessment in healthcare

There is a growing need in mood disorders, and healthcare more broadly, to utilize technology to track daily
fluctuations in health status beyond the clinic walls. Healthcare is, of course, something that occurs every day, rather than
the few times a year when people show up at a doctor’s office or clinic. Indeed, a range of technology has shown promise in
2
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Table 1-1
Data description — Demographics and phone dimension.
Data Description

Age, Gender User’s age/gender
PhoneSize Scale of phone size based on phone model

recent years in this regard, from smartphone interactions [26] to robotic pets [27]. Many studies related to these generally
fall into the spectrum of ecological momentary assessment (EMA), which is form of ongoing, in-the-wild assessment based
on the notion of randomly sampling each user’s behavior and/or health status multiple times throughout the day over
a period of time (days, weeks, months) to capture realistic human behavior when no one is directly observing them.
However, it is important to note that EMA can be subjective, as the data typically is based on self-report assessments of
the user’s status [28]. Thus one approach to augmenting EMA is by incorporating ambulatory assessment, such as by using
the technologies mentioned above, in order to monitor interaction behaviors directly in real-time [29]. Such information
can then be tied back to EMA self-assessments as well as other clinical measures of health outcomes [30]. This EMA
approach holds even more potential if one considers incorporating a combination of multiple monitoring technologies
into a single internet-of-things type connected system: smartphones, wearables, smart home sensors, in-home robots,
and other devices.

The study described here focuses on one particular type of technology interaction (smartphones), but there are many
ngoing studies (both ours and others) using EMA with other types of pervasive technologies, such as socially-assistive
obots (SARs). We return to this topic in the Discussion section and consider how some of our findings here might be
pplicable to future connected systems.

. Methods

.1. Data description

Our dataset was comprised of 328 individuals from an open-science dataset, who downloaded the BiAffect smartphone
pp from the Apple Playstore between Spring 2018 and Spring 2021. Upon downloading, the BiAffect app replaces the
tandard iOS keyboard with a cosmetically similar keyboard and records keystroke dynamics metadata regardless of
hether the user is texting, writing an email, posting on social media, etc. [17]. This allows us to collect pervasive data on
hese passive technology interactions over an extended period of time. Additionally, users were pinged to complete a PHQ
utcome scale weekly, which is widely used measure of depression symptoms [31]. Approximately 2/3 of the individuals
eported having diagnosed bipolar, whereas others were undiagnosed (who may or may not have bipolar). Our dataset
hus contains both diagnosed and potential cases of bipolar disorder in the general population. The dataset included both
he variable we were trying to predict (target) and the variety of predictor variables (features), as described below.

The target variable in the dataset was the PHQChangeFlag, which indicated whether a significant change (defined as
reater than 4 points) in the PHQ outcome scale occurred in the current week relative to previous weeks. Here, we used
he PHQ8, which excludes the suicidality item in the PHQ9 scale. As the aim was to predict mood instability, the change
ould be either an increase or decrease. The value of 4 was chosen as it represents the clinical threshold for a significant
hange in depressive symptoms [31], whereas smaller changes may or may not represent clinically significant events and
ur focus here was on real-world clinical relevance.
The features are described in Table 1 (separated by feature type into Tables 1-1, 1-2, and 1-3). There were a total

f 54 features, comprising a mix of clinical, demographic, and typing dynamics variables. On average, each individual
ad 9.6 weeks worth of data, with a PHQ change occurring roughly 18.7% of the time. Approximately half of individuals
xperienced at least one significant PHQ change (54.4%). The average age was 41.3. Approximately 62% reported having
epression (with an average PHQ score ∼9.3), and 24% reported having PTSD. The average number of weekly keypresses
er person was roughly 5280 (total of 17.3 million overall), while the average weekly autocorrect rate was 0.013 (1.3%
f presses) and the backspace rate was 0.089 (8.9% of presses). The average weekly median press duration (hold time of
he keypress) was approximately 90 ms, while the average interkey delay between keypresses was 360 ms.

We note that average PHQ score here (∼9.3) was on the lower side of what we expected, straddling the boundary
f mild and moderate depression (with a score of 5–9 being mild depression and 10 being the threshold for moderate
epression). This could be due to a variety of reasons. Since the bipolar diagnosis is self-reported, it could a past diagnosis
rom years before (or even a misdiagnosis). It could also be possibly due to the fact that bipolar individuals’ mood
luctuates and thus they are not always in a depressed state. This may be something of note for future research.

.2. Exploratory data analysis

Prior to modeling any data, we were concerned about potential collinearity in our feature set (see Table 1). In particular,
ince some of the typing dynamic features overlap in terms of domain (i.e. variations within the same general concept,
uch as median keypress duration), they may be strongly correlated. Such collinearity represents noise in the dataset,
3
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Table 1-2
Data description — Clinical variables.
Data Description

ADHD, Anxiety, BD_binary,
Depression, OCD, PTSD, Schizophrenia,
SeasonalAffectiveDisorder,
SubstanceAddictionDisorder

Diagnosis of ADHD/anxiety/bipolar disorder/depression/OCD/
PTSD/Schizophrenia/seasonal affective disorder/substance addiction
disorder (binary, 0/1)

Baseline_PHQ Absolute value of the PHQ8 score from weeks prior
Diag_PreferNotAnswer Preferred not to respond to diagnosis questions (binary, 0/1)
MDQdiag MDQ diagnosis (binary, 0/1)
NoneofTheseDiags None of the listed diagnoses (binary, 0/1)
PHQChangeFlag Whether there was a change of 4 or more in PHQ score since the

previous week (binary, 0 means no change)

Table 1-3
Data description — Typing dynamics.
Data Description

autocorrectRate Fraction of autocorrect events per total keypresses for each week
autocorrectRate_wkSD Standard deviation of autocorrect rates for each day over the week
Avg_medPressDuration Median press duration for each session averaged over the week (in

seconds)
Avg_nAlphanum,
Avg_nAutocorrect,
Avg_nBackspace

Number of alphanumeric/backspace/
autocorrect keypress types per session averaged over each week

Avg25PercentilAA,
Avg75PercentileAA,
Avg90PercentileAA,
Avg95PercentileAA

25th/75th/90th/95th percentile of interkey delays for
alphanumeric–alphanumeric transitions for each typing session averaged
over the week (in seconds)

AvgMAD_AA Median absolute deviation of interkey delays for
alphanumeric–alphanumeric transitions for each typing session averaged
over the week (in seconds)

AvgMedAA, AvgMedAB,
AvgMedBA, AvgMedBB

Median interkey delay for alphanumeric–alphanumeric
(AA)/backspace–backspace (BB)/alphanumeric–backspace
(AB)/backspace–alphanumeric (BA) transitions for each typing session
averaged over the week (in seconds).

AvgVarAA, AvgVarAB,
AvgVarBA, AvgVarBB

Variance of interkey delays for alphanumeric–alphanumeric
(AA)/backspace–backspace (BB)/alphanumeric–backspace
(AB)/backspace–alphanumeric (BA) transitions for each typing session
averaged over the week (in seconds)

backspaceRate Fraction of backspaces per total keypresses for each week
bkspRate_wkSD Standard deviation of backspace rates for each day over the week
distToCenterPrevRatioAA Median ratio of distance to center of key and distance to previous key

for alphanumeric–alphanumeric transitions for each week
med_sessDuration Median session duration for each week (in seconds)
medianDistCenter Median distance from touch to center of key for each week
medianDistCenterAA,
medianDistCenterAB,
medianDistCenterBA

Median distance from touch to center of key for each week for
alphanumeric–alphanumeric (AA)/alphanumeric–backspace
(AB)/backspace–alphanumeric (BA) transitions (in mm)

medianIKD Median IKD for each week (interkey delay), i.e. time between
consecutive keypresses in seconds

medianIKD_AA,
medianIKD_AB,
medianIKD_BA

Median IKD for alphanumeric–alphanumeric
(AA)/alphanumeric–backspace (AB)/backspace–alphanumeric (BA)
transitions for each week (in seconds)

MedianPressDur Median time a key was pressed for each week (in seconds)
medianPressDurAA,
medianPressDurAB,
medianPressDurBA

Median keypress duration for alphanumeric–alphanumeric
(AA)/alphanumeric–backspace (AB)/backspace–alphanumeric (BA)
transitions for each week (in seconds)

medIKD_wkSD Standard deviation of median IKDs for each day over the week
nKeypresses Number of keypresses per week

which can distract models from the true underlying signal by obscuring it. As such, we produced a color-coded correlation
matrix in Python using the Seaborn library to investigate this, which can be seen in Fig. 1.

Given the large number of typing dynamic features in our dataset, the individual numbers can be difficult to see,
o we direct the readers’ attention to overall color patterns. In particular the rectangular blocks of lighter shade colors
long the diagonal indicate significant pockets of collinearity in some of our feature domains (i.e. correlations in the
ange of 0.75 to (1). To deal with this, we elected to use only a single feature for each domain: interkey delay, distance
o center, and press duration (medianIKD, medianDistCenter, medianPressDur). Additionally, given the strong overlap
etween interkey delay and some of the alpha–alpha percentile fields, we also chose to use only the Avg90PercentileAA
4
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Fig. 1. Feature correlation matrix.

field. It is thought that the alpha-alpha fields likely capture more of the pauses between typing episodes, while medianIKD
captures more of the actual typing speed. However, the lower percentiles (25th, 75th) seem to not capture that distinction
as clearly, based on the correlations to medianIKD (similar to that reported in Vesel et al. [17]). Finally, we elected to only
use the alphanumeric–backspace transitions (AvgMedAB, AvgVarAB), but to drop the reverse backspace to alphanumeric
transitions. This reduced our dataset to 23 typing dynamic features, and 38 features total (from the original 54). Those 38
features can be seen in Section 3.2 in the results below (see Table 4 for reference)

2.3. Analysis approach

Data here was modeled using Python’s Scikit-Learn package (https://pypi.org/project/scikit-learn/). Multiple modeling
methods were attempted: Random Forest, Gradient Boosting, Neural Networks, and Support Vector Machines (SVM).
Models were generally run using the default parameters in Scikit, though some experimentation was performed (similar
to [32]). For instance, for SVMs the RBF kernel was used. For the neural networks, those were ran using the python
package Keras (https://keras.io/, version 2.5), which is a deep learning library based on TensorFlow, using the same default
parameters as Scikit (a single Dense hidden layer of 10 units). We did attempt hyperparameter tuning with one of the
better performing models (random forests), but in general that had minimal effect and is outside the scope of this paper
(as we chose to focus our efforts on more promising avenues of analysis). As such, models are using set parameters.
Beyond that, we explored various types of preprocessing, e.g. normalizing the features, target class rebalancing. We also
5

https://pypi.org/project/scikit-learn/
https://keras.io/


C.C. Bennett, M.K. Ross, E. Baek et al. Pervasive and Mobile Computing 83 (2022) 101598

m
i
m
p

i
d
W
f
s
f
m
T
f

3

3

t
(
t
a
a
p
d

p
T
o
c
m
w
s
q
T
s

3

t
s

t
r
w
e

Table 2
Main result.
Classifier Accuracy AUC Sensitivity

Random Forest 0.90 0.97 0.8545
Neural Network 0.87 0.93 0.9134
Gradient Boost 0.89 0.95 0.8335
SVM 0.82 0.91 0.8884

explored various types of feature selection to identify which features were driving patterns observed in the data. Those
results are presented in Section 3.

Performance was estimated using multiple performance metrics, based on 5-fold cross validation, following standard
achine learning guidelines [24]. Given that various types of analysis were performed, more specific details are provided

n the Results (Section 3), where appropriate. Additionally, given the wide range of analysis, some results unrelated to our
ain conclusions are not shown, for brevity. We note that models were trained to be person-specific in order to make
redictions for specific individuals, based on each unique characteristics (i.e. features).
Due to imbalances in the target variable (approximately 18.7% of samples had a change, 81% did not), we used Python’s

mblearn package (https://pypi.org/project/imblearn/) to evaluate several different methods of class rebalancing on the
ataset: undersampling the majority class, SMOTE [33], and a hybrid approach (combining undersampling with SMOTE).
e also employed different types of feature selection methods, including both filter-based and wrapper-based [34]. The

ilter-based method utilized information gain to rank each feature (univariate approach) which could then be used to
elect some top k features (k-count). The wrapper-based method used a Random Forest model to evaluate different sets of
eatures across hundreds of trials, identifying the best set of features based on the predictive performance of the resulting
odel. To further evaluate the directionality of features relative to the target variable, we also calculated odds ratios.
his allowed us to determine, for instance, whether a higher number or lower number of keypresses predicted future
luctuations of depressive symptoms.

. Results

.1. Main results

Our primary goal focused on whether we could predict whether a participant’s PHQ score significantly changed in
he coming week, based on their phone typing interaction data in the past weeks leading up to it. Our main results
henceforth referred to as our ‘‘baseline’’) are shown in Table 2. We used all available features as well as hybrid approach
o re-balance the data (described in Methods, Section 2.2). Several types of rebalancing were explored, but the hybrid
pproach produced the most stable performance. As such, the subsequent tables in these results all use the same hybrid
pproach as Table 2, for fair comparison. SMOTE alone is known to sometimes produce overly optimistic estimates of
erformance in highly imbalanced datasets when a large number of synthetic samples are created [35], and likewise our
ata size was too limited to allow for undersampling by itself to perform well.
As can be seen in Table 2, the tree-based models (Random Forest and Gradient Boosting) were generally the best

erforming models, without the need for any significant hyperparameter tuning or other more sophisticated methods.
hese results (∼90% accuracy) are similar to what has been reported elsewhere in the literature for predicting bipolar
utcomes using smartphone keypress dynamics [18,19], and as such may represent the high-water benchmark for
urrent machine learning approaches. We do note that for Neural Network approaches, more complex deep learning
ethodologies (beyond the single dense hidden layer used here) have pushed the result up to near 90% accuracy as
ell [19]. However in contrast to previous research, our prediction target here is slightly different — specifically predicting
ignificant changes in depressive symptoms based on the keypress dynamics before the change. Thus, the research
uestion being asked is different, with a focus on those depressive symptoms, rather than predicting bipolar in general.
he main takeaway here is that pervasive smartphone interactions appear to be predictive of multiple facets of bipolar
ymptomology, which may have important implications for clinical care in the future.

.2. Feature selection

In order to understand which features were driving the patterns seen in our main results, we undertook several
ypes of feature selection approaches, including both wrapper-based and filter-based approaches (described in Methods
ection) [34]. For brevity, we present a summary below. Table 3 shows the results using a wrapper-based method.
As can be seen Table 3, the results are very similar to our main baseline results in the previous section, except in

his case using only 16 out of the 38 total features in the dataset. Similarly, we explored filter-based method, iteratively
educing the k-count (see Methods section) to detect the threshold where ML model performance dropped. In other
ords, we started with all features (setting k = total number of features) and then gradually reduced that number with
ach iteration, building ML models on each iteration using that feature subset and measuring model performance. This
6
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Table 3
Wrapper-based results.
Classifier Accuracy AUC Sensitivity

Random Forest 0.90 0.97 0.8683
Neural Network 0.84 0.90 0.9064
Gradient Boost 0.89 0.96 0.8417
SVM 0.82 0.91 0.8783

Table 4
Filter-based results.
Ranking Feature name Information gain Odds ratio

1 Age 0.34240 0.86
2 Baseline_PHQ 0.21307 2.01
3 PhoneSize 0.19388 0.67
4 Gender 0.18613 1.74
5 Depression 0.18577 1.12
6 MedianPressDur 0.18349 0.28
7 BD_Binary 0.17448 2.43
8 Anxiety 0.16636 1.43
9 nKeypresses 0.15585 2.22

10 MDQdiag 0.14184 2.00
11 PTSD 0.14063 1.89
12 ADHD 0.11527 1.24
13 medianDistCenter 0.10431 1.03
14 med_sessDuration 0.08647 1.11
15 AvgVarAA 0.08537 0.99
16 Avg_nAutocorrect 0.07778 1.20
17 AutocorrectRate 0.07588 2.10
18 AvgVarAB 0.07260 1.28
19 AvgMedBB 0.07234 0.92
20 bkspRate_wkSD 0.07229 0.99
21 Avg90PercentileAA 0.07203 0.94
22 NoneofTheseDiags 0.07109 0.54
23 Avg_medPressDuration 0.06773 1.34
24 autocorrectRate_wkSD 0.06638 1.16
25 Avg_nBackspace 0.06343 1.21
26 Avg_nAlphanum 0.06277 1.04
27 AvgMedAB 0.06210 1.03
28 AvgVarBB 0.06182 1.32
29 medIKD_wkSD 0.06169 1.52
30 SeasonalAffectiveDisorder 0.06017 1.51
31 medianIKD 0.05590 0.72
32 AvgMedAA 0.05519 0.77
33 OCD 0.05364 1.57
34 AvgMedAA 0.04973 0.97
35 distToCenterPrevRatioAA 0.04549 1.20
36 BackspaceRate 0.04537 2.06
37 SubstanceAddictionDisorder 0.04180 1.49
38 Diag_PreferNotAnswer 0.00394 1.51

approach is akin to backwards stepwise selection in a traditional statistical sense, though it differs slightly in that we
are not using coefficients based on regression nor running statistical tests to compare features, but rather comparing
ML model performance directly based on different feature subsets. Using this approach optimal k-count was found to be
approximately the top 10–11 features across different ML classification methods. The feature ranking from the filter-based
approach is shown in Table 4, with the blue line indicating the approximate cutoff of important features (around 10).

We note that there are a mix of features selected here in the top 10–12 features, including several interesting features
ight around the cutoff line such as nKeypresses and PTSD. Curiously, PTSD was amongst the features with the highest
dds ratio, with participants having PTSD being nearly twice as likely to exhibit mood instability than others. Combined
ith the typing dynamic features, this suggests that there may be some interplay between PTSD and bipolar symptoms
hat impacts their interaction patterns with technology, perhaps related to trauma-induced patterns of behavior (see
iscussion) [36]. Such interaction patterns may serve as useful digital markers of symptoms for future remote monitoring
f bipolar disorder. Finally, we summarize the selected features across methods in Table 5 (only features selected by at
east one method are shown). Features in bold/italic were selected in both wrapper-based and filter-based approaches,
hough we chose only the top 10 for the filter-based method in Table 5 to be as conservative as possible. We note there
s a large amount of overlap in the selected features between both approaches.

Outside of phone size dimensions, the selected features fall into three basic categories: typing dynamics, Age/Gender
emographics, and mental disorder status. The presence of typing-related features indicate that typing dynamics and
7
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Table 5
Selected features.
Feature selection type (# features selected)

Features Wrapper method (16) Filter method (10)

Age 1 1
Gender 1
MDQdiag 1 1
phoneSize 1 1
BD_binary 1 1
Anxiety 1 1
ADHD 1
Depression 1 1
PTSD 1
nKeypresses 1 1
bkspRate_wkSD 1
medianPressDur 1 1
AvgMedAA 1
med_sessDuration 1
Avg90PercentileAA 1
Avg_medPressDuration 1
Baseline PHQ 1 1

mood instability are related, concurring with previous research [18,19]. In our case, a higher number of total keypresses
(7200 weekly average) and more typing errors – e.g. more backspace presses (11.7% of time vs. 8.7%) and a lower
Avg90PercentileAA value (0.75 vs. 1.05) – predicted greater future fluctuations of depressive symptoms, based on the
odds ratios. The results also showed that when previous weeks PHQ scores (Baseline PHQ) were higher to begin with,
individuals exhibited a greater likelihood for future fluctuations in PHQ scores, averse to those with a lower Baseline
PHQ (average of 11.6 vs, 9.1). Likewise, individuals who were younger in age and who identified as female also exhibited
more fluctuations, which fits with existing medical knowledge. Individuals who experienced significant fluctuations had
higher rates of self-reported bipolar (75% vs 50%), as well as depression, anxiety, and ADHD. Of particular note, those who
experienced fluctuations also had much higher rates of PTSD (32.3% vs 17.3%).

3.3. Other analyses

We also performed a number of other analyses to further evaluate the sensitivity of model performance to slight
erturbations in model parameters and features, akin to a sensitivity analysis approach in agent-based modeling in
L [37]. For brevity, the results are summarized in this section but not shown here in table form, as for the most part

hey had minimal effect.
We assessed the effects of normalizing the data in various ways, including normalization of the target and features. We

lso conducted hyperparameter tuning on our best performing model (Random Forest) using the Grid Search functionality
n Python’s Scikit-Learn package. However, neither normalization nor grid search had any substantive effect on model
erformance.
Additionally, we attempted several variations of data slicing on our feature set, to assess the importance of some feature

roupings. In the feature selection analysis above, phone size dimensions, demographics, and baseline PHQ scores appear
o impact the influence of typing dynamics on predicting changes in mental health status. For instance, for Baseline PHQ
prior to the change), people with higher absolute starting PHQ values appear to have different probabilities of subsequent
luctuations in depression symptoms. Likewise, in most of the research literature (including this paper), many of the
eyboard dynamic features are based on the speed and rhythm with which people typed, which means that size of the
hone might affect those features because on a larger phone the distance from one key to another is typically larger and
he screen larger. In order to isolate and quantify the effects of other features without the influence phone/screen size or
aseline PHQ scores, we conducted additional analyses where we sliced out those feature groupings a priori one-group-
t-a-time, and then analyzed only the remaining ones. However, like normalization and grid search, this data slicing had
inimal effect. There were some changes to selected features. For instance, when slicing out the phone size dimensions,
e found that additional typing dynamic features (medianIKD and medianDistCenter) became selected by wrapper-based
nd filter-based methods. In other words, not surprisingly, differences in phone size impact typing speed and rhythm.
imilar effects were seen with demographics and baseline PHQ scores.
However, overall model performance in terms of accuracy and AUC remained unchanged regardless of the data slicing.

ome of this may though explain why different research studies are reporting slightly different sets of predictive features
ased on traditional statistical analyses. As has been shown elsewhere, in many domains there are potentially multiple
eature sets that can produce comparably good results [32].
8
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4. Discussion

4.1. Summary of results

The findings from our analysis here appear to indicate that real-world data from passive technology interactions
ith smartphones can be utilized as an EWS monitoring tool for mood disorders like bipolar. We were able to predict

luctuations in depressive symptoms (i.e. mood instability) with approximately 90% accuracy. This is similar to what
as been reported elsewhere in the literature using controlled study data with a well-characterized sample [18,19]. Our
tudy here adds to those prior results, showing that such patterns are detectable in a real-world open dataset. This holds
elevance for future clinical practice given that we can predict changes in depressive symptoms before they occur, which
ay enable us to develop more proactive strategies for managing mood instability in patients.
Beyond those primary results, we also explored what variables were driving those patterns through feature selection

nd data slicing. To summarize, there were a mix of features including both keypress typing dynamics and clinical variables
hat were important for accurate prediction, and a subset of approximately 10–15 features was able to produce ML models
f sufficient performance. We also found that data slicing out the phone dimensions caused more of the keypress typing
eatures to appear as relevant, i.e. differences in phone dimensions can obscure the importance of the typing dynamics.
inally, we also noted some interesting individuals features in the selected list, such as PTSD. We discuss the implications
f that more in the next section.

.2. Trauma & technology interaction patterns in mental health

One of the more interesting findings from the feature selection analysis in this study was the appearance of PTSD as
variable of high relevance for predicting clinically-relevant fluctuations in depression symptoms. Indeed, individuals
ith PTSD were twice as likely to experience a fluctuation as those who did not have PTSD. Elsewhere in the literature,

nteractions between PTSD and bipolar symptoms have been reported [38,39], although it is not exactly clear whether
eople with bipolar are more likely to be exposed to a trauma event due to bipolarity, or whether bipolarity makes
hem more vulnerable when exposed to trauma events, thus leading to higher rates of PTSD [40]. Regardless of the exact
tiology, past trauma appears to exacerbate mood instability in people with bipolar, leading to overall worse outcomes
n the long-term [41–43].

Curiously, these trauma-induced patterns of behavior seem to also mediate the technology use patterns in people with
o-morbid PTSD and bipolar. In our study here, this appears to impact keyboard typing dynamics during smartphone use.
eyond this, a growing body of research has reported similar effects on a variety of pervasive technology interactions,
rom smartphone addiction [36] to internet use [44]. Other studies have even shown how these technology interactions
ven lead to poor sleep quality in patients [45]. Expanding these investigations to a broader array of interaction types and
echnologies, e.g. wearables, social robots (see Section 4.3), holds potential to further shed light on the aspects of bipolar
hat relate to quality-of-life issues and day-to-day functioning, beyond simply measuring symptoms themselves. In other
ords, understanding the role of trauma history in bipolar sufferers’ technology use patterns may serve as useful digital
arkers for better understanding the course of illness in the future.

.3. EMA-based connected ecosystems in healthcare

The results of the study here are indicative of the potential real-time monitoring via EMA of people’s everyday
ealth and health-related behaviors in combination with pervasive interactive devices capable of direct monitoring
i.e. ambulatory assessment) that are increasingly becoming embedded into the spaces where we live, work, and play. Such
pproaches are being applied to everything from bipolar disorder [46] to dementia and neurodegenerative diseases [47]
o cardiovascular disease [48]. The advantage of this EMA approach is that it can be integrated with various types of
echnology, thus taking advantage of devices that have direct benefits to the end users (smartphones, wearables, social
obots) without requiring the burden of installing additional technology solely for the purpose of monitoring [26,27,29].
here is further potential to use multiple types of data from each device. For instance, beyond the smartphone typing
ynamics utilized here, one could envision in the future incorporating data from self-report apps, accelerometers, GPS,
nd other sensors embedded in modern smartphones. Moreover, such devices, when appropriately designed, can offer
irect benefits to the psychological and well-being of the users, as evidenced by social robot research [49,50]. Or to put
his in simpler terms, we can create a window into people’s everyday health simply by giving them something to play
ith.
As mentioned in Section 1.3, the true power of EMA may lie in combining it with ecosystems of interconnected

echnology into a single internet-of-things type system: smartphones, wearables, in-home robots, and other devices.
hallenges exist such as dealing with issues like sensor fusion across different devices [51]. However despite those
hallenges, there is burgeoning evidence that EMA utilizing technology ecosystems may create shift in healthcare
echnology beyond the clinic walls much akin to the advances resulting from the development of systems biology [52,53].
atterns that are only vague signatures in single-device data may become vastly more apparent in multiple-device data.
his is an area of untapped potential for future research.
9
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4.4. Limitations

There appears to be a clear connection between the typing dynamics and mental health status in bipolar patients, and
he potential ability to predict changes in depression status prior to their occurrence using smartphone data. However, we
ote that as the sample was drawn from the general population, a majority but not all participants self-reported a formal
iagnosis of bipolar disorder, which was not possible to independently verify. While many individuals in the general
opulation may be self-diagnosed, or simply suffer from the spectrum of mood disorders without formal diagnosing,
thers may also be simply mis-diagnosed. These are real-world issues that have no clear solution (i.e. the challenge
f differential diagnosis). In general, we think this makes our dataset here more reflective of actual clinical practice
utside research settings, but it does represent a significant limitation that warrants caution. We also detected a potential
nteraction between self-reported PTSD and bipolar symptoms that impacts their interaction patterns with technology,
ut the significance is not entirely clear given our dataset. This may be of interest for future research.
Beyond the clinical limitations, we note that the standard deviation of performance metrics across cross-validation

olds was very large, which was at least partly due to the relatively small size of the dataset. Although our sample size
ould be considered sizable for many healthcare datasets, the differences in typing dynamics from one person to the
ext is often measured in fractions of second, so the differences between target classes (e.g. depression change vs. no
epression change) are very small in absolute terms. This is a limitation of the current research in this area. Therefore,
e advise caution in interpreting these modeling results, as there was significant instability in the observed patterns. More
esearch is likely needed here with additional datasets in this domain before coming to any firm conclusions. Furthermore,
t is possible that other modeling methods not explored here may produce better results, including both machine learning
nd other types of feature selection (such as feature importance from random forest models). There is an endless array
f possible alternatives, which deserve further exploration. We leave those questions for future research.
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