
I400 Health Informatics – Data Mining Instructions (KP Project) 
Casey Bennett 

Spring 2014 

Indiana University 

 

 

1) Import: First, we need to import the data into Knime. 

 

 add CSV Reader Node (under IO>>Read) 

 right-click and select configure 

 browse to file location of csv data file 

 uncheck “Has Row Header” box 

 Exit out of the configuration screen, right-click and select execute 

 If the little traffic light below the node goes to green, then it ran correctly!  Good job! 

 

 

 
 

 

 

 

 

  



2) Adjust Data Types: Next, we to change the data-types, to make sure that Knime correctly identifies 

variables as categorical (i.e. strings) or continuous (i.e. numbers).  Usually it figures this out on its own, 

but often in the computer/data world we use 1=yes and 0=No, which confuses most analysis software.  

So we need to fix this manually.  **Hint: You can determine which variables in your dataset are 

numerical using the Description file (some datasets may have none). 

 

 add Number To String node (under Data Manipulation>>Column>>Convert&Replace) 

 connect to CSV Reader node 

 right-click and select configure 

 Knime will default so that all numbers are converted to strings, using the Description file for 

your dataset, identify each numerical variable, and remove them from the “Include” list 

 Each variables selected should shift over to the left, under “Exclude” 

 Make sure the “Class” variable is still on the “Include” side 

 

**In the example below, all the variables except the Class variable are numerical, this is not the 

case for all datasets 

 
 

 

  



3) Partition: Now we need to partition the data, which means to divide it up.  The reason is that in order 

to get a valid estimate of the accuracy of any model we build, we need to test the model using data that 

was NOT used to build the model.  Using the same data for both steps can result in over-estimates of 

how good our model is.   

 

We refer to the data used to build the model as the training set.  We refer to the data used to test the 

model as the test set.  Now, technically to do this in the most correct way (and to get the most accurate 

estimates), we would use an technique called cross-validation, which involves dividing the data into a 

number of equal sets (called folds, typically we use 10), training a model using all of the folds but one 

(i.e. 9 of them), testing on the held-out fold, and then repeating the process 10 times holding each fold 

out in turn and taking the average performance.   

 

However, to keep things simple, we’re just going to use a single training/test set.  Typically, this entails 

using 2/3 of the data to train the model, and 1/3 of the data to test it.  We’ll round these off to 65% and 

35% respectively.  So our next step is dividing (i.e. partitioning) our data set. 

 

 add Partitioning node (under Data Manipulation>>Row>>Transform) 

 connect to Number To String node 

 right-click and select configure 

 in the top-half, select the “Relative” radio button, change the % value on the right to 65 

 in the bottom-half, select the “Stratified sampling” radio button, make sure the “Class” variable 

is selected in the drop-down to the right of it 

 

 
 

 



4) Setup first classifier: Now we’re ready to build some models.  There are some other steps we could 

include, like imputing missing values or pre-discretizing the data, but we’ll skip those for now (your 

datasets are already cleaned up anyway, e.g. there is no missing data).  As far as model building, we’re 

going to do three things: build a Bayesian network, build a decision tree, and do some feature selection.  

We’ll do all this using Weka, which is open-source data mining/machine learning library integrated into 

Knime. 

 

So the first thing is to setup the Bayesian Network (all the directions below are for Weka version 3.6, but 

if you are installed a newer version, e.g. 3.7, no problem).  To do this, we need two things, a classifier 

node and a predictor node. 

 add BayesNet node (under Weka>>Weka3.6>>Classification Algorithms>>bayes>>BayesNet) 

 connect to Partitioning node, top output arrow (training data) 

 add WekaPredictor node (under Weka>>Weka3.6>>Predictors>>Weka Predictor) 

 connect to Partitioning node, bottom output arrow (test data) 

 Finally, the gray boxes between the BayesNet classifier node and the WekaPredictor node need 

to be connected, drag-n-drop a connector, when done it should look like the below 

 

  
  



5) Check Progress: Before we go on, let’s make sure what we’ve setup so far works.  Up top along the 

menu bar, there is a green circle with double arrows on it.  If you hover over it, the tooltip should say 

“Execute all executable nodes”.  Click on it, if the stoplights under all the nodes turn green, we’re in 

business.  Otherwise, come talk to us (or post to the forums) before doing further steps so we can help 

you get it working. 

 

   



6) Accuracy Scorer: Before we train any models, we need to be able to “score” them, i.e. tell how good 

they are.   We’ll do this using two metrics: accuracy and AUC.  I’ll explain the differences in class, for 

now, you can just take them as two numbers which represent scores.  It’s just like a basketball game, 

higher scores are better.  We’ll add the accuracy scorer in this step, and the AUC in step #7. 

 

 add Scorer node (under Mining>>Scoring) 

 connect to WekaPredictor node 

 right-click and select configure 

 under the “first column” section, select the drop-down and change to “Class”, the “second 

column” should be set to winner 

 
  



7) AUC scorer: Add the AUC scorer 

 

 add ROC Curve node (under Mining>>Scoring) 

 connect to WekaPredictor node 

 right-click and select configure 

 change the “Class column” drop-down to “class”, change the “Positive class value” drop-down 

to 1, and in the Exclude/Include lists below, make sure the “1” prob column is added to the 

“Include” list 

 

 
  



8) Test BayesNet:  Okay let’s try running it. 

 Click the double-arrow green button “Execute all executable nodes” up along the menu bar, all 

the stoplights should turn green 

 

We’re going to look at three things: a visualization of the model, the accuracy score, and the AUC score. 

 Right click on the Scorer node, select “View: Confusion Matrix”, the accuracy score is down 

toward the bottom 

 Right click on the ROC Curve node, select “View: ROC curves”, the AUC score is will be the 

number inside parentheses in the lower right corner of the graph 

 Right click on the BayesNet node, select “View: Weka Node View”, select the “Graph” tab, you 

should see a visual of the BayesNet you just trained.  Clicking on any of the variable nodes in the 

graph will show the CPT (conditional probability table) for that node.   The graph can also be 

exported as .png or .svg image, but it’s often easier to take a screenshot of it.   

 HINT: you can move the visualization image around in the window by holding down the left-click 

and dragging it.  Right-clicking will bring up options like auto-scale that may make the graph 

easier to read.  

 

 

 
  



9) Run BayesNet: The first thing you’ll notice from the graph of the BayesNet above is that all the 

variable nodes in the graph directly connect to the Class node, and not to each other.  Basically, we’ve 

trained a Naïve Bayes classifier, which assumes that none of the variables have any 

conflating/correlated effects.  For instance, we are assuming that the risks of higher BMI do not increase 

with age or vary by gender.  To adjust this, we are going to alter the configuration, and rerun the model. 

 

From this point forward, you should record three things for each model: 1) a screenshot of the model 

visualization, 2) the accuracy score, and 3) the AUC score. 

 

 Close the various views from the last step (Accuracy, AUC, Weka Node view) 

 right click on the BayesNet node, select configure 

 under the “search algorithm” option, left-click on the white area where it says “K2 -P 1 -S 

BAYES” (don’t hit choose, just click in the white area) 

 a new screen will pop-up with a number of options, change the “maxNrOfParents” option from 

1 to 2 

 Rerun the model, record a visualization, the accuracy, and the AUC score 

 

 
  



10) Run Decision Tree: Now we’re gonna do the same thing, but using a simple C4.5 decision tree.  C4.5 

is one of the “classic” decision tree algorithms.  Weka and Knime call it “J48”. 

 

 Close the various views from the last step (Accuracy, AUC, Weka Node view) 

 Right-click on the BayesNet node, select delete 

 add J48 node (under Weka>>Weka3.6>>Classification Algorithms>>trees) 

 connect to Partitioning node, top output arrow (training data) 

 connect the J48 node to the WekaPredictor node by linking the gray boxes 

 right click on the J48 node, select configure 

 change the “minNumObj” option to 5 

 Run the model, record a visualization, the accuracy, and the AUC score 

 

 
  



11) Run Feature Selection: The last thing we’re going to do is feature selection (“feature” is just another 

word for “variable”).  One thing we may want to know is whether some variables (e.g. age, gender) 

actually make a difference in the predictions we might want to make about certain diseases or 

treatments.  Perhaps we are creating a public health screening program, and we want to know which 

factors to screen for.  Maybe we are building a mobile app, and want to know which variables to track.  

Parsimonious models (i.e. models with the fewest necessary variables) are also easier to understand and 

explain to other people. 

 

There are many ways to do this – generally the best way is to train lots of models using varying sets of 

features.  We refer to this as a wrapper-based approach.  However, we can use simpler methods that 

“rank” the features in terms of expected importance prior to building any models.  Some of these ranker 

methods are univariate (evaluate each variably independently, e.g. gain ratio) and some are multivariate 

(evaluate all variables simultaneously, accounting for correlations, e.g. relief-F).   We’ll keep it simple 

here, and use a univariate ranker method, based on a chi-square evaluator (the same chi-square you 

may be familiar with from statistics).  We’ll then train another BayesNet model (just like step #9). 

 

Setting this up will take a number of steps, which will be explained over the next several pages. 

 

 Close the various views from the last step (Accuracy, AUC, Weka Node view) 

 Right-click on the BayesNet node, select delete 

 add AttributeSelectedClassifier node (under Weka>>Weka3.6>>Classification 

Algorithms>>meta) 

 connect to Partitioning node, top output arrow (training data) 

 connect the AttributeSelectedClassifier node to the WekaPredictor node by linking the gray 

boxes 

 

 



 

 right click on the AttributeSelectedClassifier node, select configure 

 for the “classifier” option, click on Choose, and change it to BayesNet (under the bayes) 

 left-click in the white area of the classifier where it says “BayesNet” 

 a new window will pop-up, left-click on the white area where it says “K2 -P 1 -S BAYES” (don’t hit 

choose, just click in the white area) 

 a new window will pop-up with a number of options, change the “maxNrOfParents” option from 

1 to 2 … it should look like the below 

 

 
 

 

 hit “OK” on the two smaller screens you just opened and go back to the main 

AttributeSelectedClassifier configuration window (the larger gray screen in the screenshot 

above) 

 for the “evaluator” option, click on Choose, and change it to ChiSquareAttributeEval 

 for the “search” option, click on Choose, and change it to Ranker 

 for chi-square, the significance level for df=1 (degrees-of-freedom, which is 1 since this is a 

binary classification), is 3.841, left-click on the white area in the “search” section where it says 

“Ranker –T …” 

 a new screen will pop-up, change the “threshold” option to 3.841 (see below) 

 



 
 

 Run the model, record a visualization, the accuracy, and the AUC score … compare these to the 

results from step #9 

 We also want to note which features made the cut, and which didn’t, right click on the 

AttributeSelectedClassifier node, select “View : Weka Node View” 

 Under the “Weka Output” tab, you should find a section labeled “Ranked Attributes” near the 

top.  The chi-squared value is the decimal value on the left, with the variable name on the right.  

Only features that passed the threshold are included. 

 Record these features, including their chi-squared value, also determine which variables were 

excluded 

 

 

 

There are lots of other classification algorithms in Knime/Weka, e.g. multi-layer perceptron neural 

networks, SVMs, random forests, ensemble classifiers.  The R stats package is also integrated.   You can 

play around with these if you want.  We chose the algorithms above mainly because they produce pretty 

pictures (i.e. human-readable), be aware that many algorithms do not. 

 

  



12) Bigger Picture: These kinds of approaches are utilized in the healthcare industry to solve various 

problems and/or gain insight into challenging questions.  Some examples (doing very similar things to 

what you did above) are below: 

 
- Casey Bennett, Tom Doub, and Rebecca Selove (2012) “EHRs Connect Research and Practice: Where Predictive Modeling, 

Artificial Intelligence, and Clinical Decision Support Intersect.”  Health Policy and Technology.  1(2): 105-114.  

http://www.caseybennett.com/uploads/HLPT11_PublishedVersion.pdf  

 

- Casey Bennett, Tom Doub, April Bragg, et al. (2011) “Data Mining Session-Based Patient Reported Outcomes (PROs) in a 

Mental Health Setting: Toward Data-Driven Clinical Decision Support and Personalized Treatment." Proceedings of the IEEE 

Health Informatics and Systems Biology Conference. 229-236.  

http://www.caseybennett.com/uploads/Data_Mining_PROs_Final__Arxiv.pdf  

 

- Casey Bennett and Kris Hauser (2013) “Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov 

Decision Process Approach.” Artificial Intelligence in Medicine. 57(1): 9-19.  

http://www.caseybennett.com/uploads/Bennett_AI_ClinicalDecisionMaking__Article_in_Press_.pdf  

 

 

 

The things you did above are also very similar to the techniques used by IBM’s Watson to learn from 

data! 

 
- David Ferrucci, et al. (2013) "Watson: Beyond Jeopardy!" Artificial Intelligence. 199: 93-105.  

http://www.researchgate.net/publication/237052357_Watson_Beyond_Jeopardy!/file/60b7d51b0ef16d8fa8.pdf  

http://www.caseybennett.com/uploads/HLPT11_PublishedVersion.pdf
http://www.caseybennett.com/uploads/Data_Mining_PROs_Final__Arxiv.pdf
http://www.caseybennett.com/uploads/Bennett_AI_ClinicalDecisionMaking__Article_in_Press_.pdf
http://www.researchgate.net/publication/237052357_Watson_Beyond_Jeopardy!/file/60b7d51b0ef16d8fa8.pdf

